On the mean density of complex eigenvalues for an ensemble of random matrices with prescribed singular values

Given any fixed N × N positive semi-definite diagonal matrix G ⩾ 0 we derive the explicit formula for the density of complex eigenvalues for random matrices A of the form where the random unitary matrices U are distributed on the group U(N) according to the Haar measure.

[1]  S. Nonnenmacher,et al.  Resonance distribution in open quantum chaotic systems. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  J. Keating,et al.  Model for chaotic dielectric microresonators , 2007, 0710.0227.

[3]  M. Rubin,et al.  Resonant eigenstates for a quantized chaotic system , 2007 .

[4]  Y. Fyodorov,et al.  On Absolute Moments of Characteristic Polynomials of a Certain Class of Complex Random Matrices , 2006, math-ph/0602032.

[5]  Quantum-to-classical correspondence in open chaotic systems , 2005, cond-mat/0508092.

[6]  M. Zworski,et al.  Fractal Weyl laws in discrete models of chaotic scattering , 2005, math-ph/0506045.

[7]  C. Beenakker,et al.  Dynamical model for the quantum-to-classical crossover of shot noise , 2003, cond-mat/0304327.

[8]  R. Prange Resurgence in quasiclassical scattering. , 2003, Physical review letters.

[9]  C. Beenakker,et al.  Quantum Andreev map: a paradigm of quantum chaos in superconductivity. , 2002, Physical review letters.

[10]  T. Geisel,et al.  Fingerprints of classical diffusion in open 2D mesoscopic systems in the metallic regime , 2002, cond-mat/0208378.

[11]  Y. Fyodorov,et al.  Random matrices close to Hermitian or unitary: overview of methods and results , 2002, nlin/0207051.

[12]  H. Korsch,et al.  Wannier–Stark resonances in optical and semiconductor superlattices , 2001, quant-ph/0111132.

[13]  A. Zee,et al.  “Single ring theorem” and the disk-annulus phase transition , 2001, cond-mat/0104072.

[14]  Peter Sollich,et al.  Disordered and Complex Systems , 2001 .

[15]  Y. Fyodorov Spectra of random matrices close to unitary and scattering theory for discrete-time systems , 2000, nlin/0002034.

[16]  Lane P. Hughston,et al.  Disordered and Complex Systems, edited by P. Sollich, A.C.C. Coolen, L.P. Hughston & R.F. Streater , 2001 .

[17]  Y. Fyodorov,et al.  Spectra of random contractions and scattering theory for discrete-time systems , 2000, nlin/0005061.

[18]  H. Sommers,et al.  Truncations of random unitary matrices , 1999, chao-dyn/9910032.

[19]  A. Zee,et al.  Non-gaussian non-hermitian random matrix theory: Phase transition and addition formalism , 1997 .

[20]  Y. Fyodorov,et al.  Statistics of resonance poles, phase shifts and time delays in quantum chaotic scattering: Random matrix approach for systems with broken time-reversal invariance , 1997 .

[21]  Y. Fyodorov,et al.  Almost-Hermitian random matrices: eigenvalue density in the complex plane , 1996, cond-mat/9606173.

[22]  M. Zirnbauer Riemannian symmetric superspaces and their origin in random‐matrix theory , 1996, math-ph/9808012.

[23]  M. Zirnbauer Supersymmetry for systems with unitary disorder: circular ensembles , 1996, chao-dyn/9609007.

[24]  F. Haake Quantum signatures of chaos , 1991 .

[25]  A. Horn On the eigenvalues of a matrix with prescribed singular values , 1954 .

[26]  H. Weyl Inequalities between the Two Kinds of Eigenvalues of a Linear Transformation. , 1949, Proceedings of the National Academy of Sciences of the United States of America.