On the computational aspects of Zernike moments

The set of Zernike moments belongs to the class of continuous orthogonal moments which is defined over a unit disk in polar coordinate system. The approximation error of Zernike moments limits its applications in real discrete-space images. The approximation error of Zernike moments is divided into geometrical and numerical errors. In this paper, the geometrical and numerical errors of Zernike moments are explored and methods are proposed to minimize them. The geometrical error is minimized by mapping all the pixels of discrete image inside the unit disk. The numerical error is eliminated using the proposed exact Zernike moments where the Zernike polynomials are integrated mathematically over the corresponding intervals of the image pixels. The proposed methods also overcome the numerical instability problem for high order Zernike moments. Experimental results prove the superiority and reliability of the proposed methods in providing better image representation and reconstruction capabilities. The proposed methods are also not lacking in preserving the scale and translation invariant properties of Zernike moments.

[1]  Chee-Way Chong,et al.  A comparative analysis of algorithms for fast computation of Zernike moments , 2003, Pattern Recognit..

[2]  Majid Ahmadi,et al.  Pattern recognition with moment invariants: A comparative study and new results , 1991, Pattern Recognit..

[3]  Kaamran Raahemifar,et al.  An effective feature extraction method for face recognition , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[4]  R. Mukundan,et al.  Moment Functions in Image Analysis: Theory and Applications , 1998 .

[5]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[6]  M. Teague Image analysis via the general theory of moments , 1980 .

[7]  Andrew Beng Jin Teoh,et al.  Palmprint Verification with Moments , 2004, WSCG.

[8]  Glenn Healey,et al.  Using Zernike moments for the illumination and geometry invariant classification of multispectral texture , 1998, IEEE Trans. Image Process..

[9]  von F. Zernike Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode , 1934 .

[10]  Mark R. Morelande,et al.  Modeling of corneal surfaces with radial polynomials , 2002, IEEE Transactions on Biomedical Engineering.

[11]  Whoi-Yul Kim,et al.  Content-based trademark retrieval system using visually salient features , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  M. Pawlak,et al.  A multibit geometrically robust image watermark based on Zernike moments , 2004, ICPR 2004.

[13]  D. R. Iskander,et al.  Optimal modeling of corneal surfaces with Zernike polynomials , 2001, IEEE Transactions on Biomedical Engineering.

[14]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[15]  Alireza Khotanzad,et al.  Classification of invariant image representations using a neural network , 1990, IEEE Trans. Acoust. Speech Signal Process..

[16]  Yongqing Xin,et al.  Geometrically robust image watermarking via pseudo-Zernike moments , 2004, Canadian Conference on Electrical and Computer Engineering 2004 (IEEE Cat. No.04CH37513).

[17]  Rajiv Mehrotra,et al.  Edge detection using orthogonal moment-based operators , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol. III. Conference C: Image, Speech and Signal Analysis,.

[18]  Roland T. Chin,et al.  On Image Analysis by the Methods of Moments , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Alireza Khotanzad,et al.  Invariant Image Recognition by Zernike Moments , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Sugata Ghosal,et al.  Zernike moment-based feature detectors , 1994, Proceedings of 1st International Conference on Image Processing.

[21]  Miroslaw Pawlak,et al.  On the reconstruction aspects of moment descriptors , 1992, IEEE Trans. Inf. Theory.

[22]  Miroslaw Pawlak,et al.  On Image Analysis by Moments , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Miroslaw Pawlak,et al.  On the Accuracy of Zernike Moments for Image Analysis , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Mandyam D. Srinath,et al.  Invariant character recognition with Zernike and orthogonal Fourier-Mellin moments , 2002, Pattern Recognit..

[25]  Sugata Ghosal,et al.  Segmentation of range images: an orthogonal moment-based integrated approach , 1993, IEEE Trans. Robotics Autom..

[26]  Karim Faez,et al.  An Efficient Feature Extraction Method with Pseudo-Zernike Moment in RBF Neural Network-Based Human Face Recognition System , 2003, EURASIP J. Adv. Signal Process..