Estimation et détection en imagerie hyperspectrale : application aux environnements côtiers. (Estimation and detection in hyperspectral imagery : application in coastal environments)

Cette these aborde des problematiques d'estimation et de detection supervisee en imagerie hyperspectrale, appliquees ici aux environnements cotiers. Des modeles bathymetriques de reflectance sont utilises afin de representer l'influence de la colonne d'eau sur la lumiere incidente. Differents parametres sont dits optiquement actifs et agissent sur le spectre de reflectance (phytoplancton, matiere organique dissoute coloree. . . ). Nous proposons d'adopter une nouvelle approche statistique pour estimer ces parametres, traditionnellement retrouves par inversion des modeles physiques. Differentes methodes telles que l'estimation du maximum de vraisemblance et du maximum a posteriori, ainsi que le calcul des bornes de Cramer-Rao, sont implementees avec succes sur les donnees synthetiques et reelles. Par ailleurs, nous adaptons les filtres supervises couramment utilises au contexte de la detection de cibles immergees. Dans le cas ou les parametres caracteristiques de la colonne d'eau sont inconnus, nous developpons un nouveau filtre issu du test du rapport de vraisemblance generalise permettant la detection sans aucune connaissance a priori sur ces parametres

[1]  D. Lyzenga Passive remote sensing techniques for mapping water depth and bottom features. , 1978, Applied optics.

[2]  Wojciech M. Klonowski,et al.  Shallow water substrate mapping using hyperspectral remote sensing , 2011 .

[3]  Wojciech M. Klonowski,et al.  Intercomparison of shallow water bathymetry, hydro‐optics, and benthos mapping techniques in Australian and Caribbean coastal environments , 2011 .

[4]  J. Pulliainen,et al.  Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons. , 2001, The Science of the total environment.

[5]  H. Claustre,et al.  Optical properties of the “clearest” natural waters , 2007 .

[6]  Luoheng Han,et al.  Estimating chlorophyll‐a concentration using first‐derivative spectra in coastal water , 2005 .

[7]  B. Deronde,et al.  Mapping of coral reefs using hyperspectral CASI data; a case study: Fordata, Tanimbar, Indonesia , 2008 .

[8]  C. Davis,et al.  Model for the interpretation of hyperspectral remote-sensing reflectance. , 1994, Applied optics.

[9]  Annick Bricaud,et al.  Light backscattering efficiency and related properties of some phytoplankters , 1992 .

[10]  Marco Lops,et al.  Asymptotically optimum radar detection in compound-Gaussian clutter , 1995 .

[11]  Chris Roelfsema,et al.  A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data , 2009 .

[12]  André Morel,et al.  Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo , 1994 .

[13]  Dimitris G. Manolakis,et al.  Detection algorithms for hyperspectral imaging applications , 2002, IEEE Signal Process. Mag..

[14]  Tiit Kutser,et al.  Mapping lake CDOM by satellite remote sensing , 2005 .

[15]  Xiaobin Yin,et al.  Deriving depths of deep chlorophyll maximum and water inherent optical properties: A regional model , 2009, CSR 2009.

[16]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[17]  T. Platt,et al.  Analytic model of ocean color. , 1997, Applied optics.

[18]  David Doxaran,et al.  Estimating turbidity and total suspended matter in the Adour River plume (South Bay of Biscay) using MODIS 250-m imagery , 2010 .

[19]  M. Kahru,et al.  Ocean Color Chlorophyll Algorithms for SEAWIFS , 1998 .

[20]  Y. Zha,et al.  A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China , 2009 .

[21]  David McKee,et al.  Estimation of absorption and backscattering coefficients from in situ radiometric measurements: theory and validation in case II waters. , 2003, Applied optics.

[22]  Petre Stoica,et al.  Introduction to spectral analysis , 1997 .

[23]  D. Hodáňová An introduction to environmental biophysics , 1979, Biologia Plantarum.

[24]  Prieur,et al.  Analysis of variations in ocean color’ , 2000 .

[25]  Anatoly A. Gitelson,et al.  Remote estimation of chlorophyll concentration in hyper-eutrophic aquatic systems: Model tuning and accuracy optimization , 2006 .

[26]  Hermann Kaufmann,et al.  Lake water quality monitoring using hyperspectral airborne data—a semiempirical multisensor and multitemporal approach for the Mecklenburg Lake District, Germany , 2002 .

[27]  Mireille Guillaume,et al.  Underwater target detection with hyperspectral remote-sensing imagery , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[28]  Georg Martin,et al.  Feasibility of hyperspectral remote sensing for mapping benthic macroalgal cover in turbid coastal waters—a Baltic Sea case study , 2006 .

[29]  A. Gitelson,et al.  Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands , 2005 .

[30]  C.J.H. Mann,et al.  Optimisation Globale: Théorie Des Courbes α-denses , 2006 .

[31]  W. Philpot,et al.  Bathymetric mapping with passive multispectral imagery. , 1989, Applied Optics.

[32]  Stefan G. H. Simis,et al.  Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water , 2005 .

[33]  Zhongping Lee,et al.  Effect of spectral band numbers on the retrieval of water column and bottom properties from ocean color data. , 2002, Applied optics.

[34]  Beatrice Lazzerini,et al.  Estimating the concentration of optically active constituents of sea water by Takagi-Sugeno models with quadratic rule consequents , 2007, Pattern Recognit..

[35]  S. Silvestri,et al.  Remote sensing retrieval of suspended sediment concentration in shallow waters , 2011 .

[36]  L. Prieur,et al.  An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials1 , 1981 .

[37]  L. O. Hall,et al.  A NEURAL NETWORK APPROACH TO DERIVING OPTICAL PROPERTIES AND DEPTHS OF SHALLOW WATERS , 1998 .

[38]  H. Gordon Can the Lambert‐Beer law be applied to the diffuse attenuation coefficient of ocean water? , 1989 .

[39]  B. Hofmann-Wellenhof,et al.  Introduction to spectral analysis , 1986 .

[40]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[41]  D. Pierson,et al.  Estimation of radiance reflectance and the concentrations of optically active substances in Lake Mälaren, Sweden, based on direct and inverse solutions of a simple model. , 2001, The Science of the total environment.

[42]  Trijntje Valerie Downes,et al.  Interpretation of hyperspectral remote-sensing imagery by spectrum matching and look-up tables. , 2005, Applied optics.

[43]  E. J. Kelly An Adaptive Detection Algorithm , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[44]  Mark Lee,et al.  BENTHIC MAPPING OF COASTAL WATERS USING DATA FUSION OF HYPERSPECTRAL IMAGERY AND AIRBORNE LASER BATHYMETRY , 2003 .

[45]  Anatoly A. Gitelson,et al.  Remote chlorophyll-a retrieval in turbid, productive estuaries : Chesapeake Bay case study , 2007 .

[46]  C. Mobley,et al.  Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization. , 1999, Applied optics.

[47]  Machteld Rijkeboer,et al.  Towards airborne remote sensing of water quality in The Netherlands - validation and error analysis , 2002 .

[48]  C. Mobley,et al.  An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters. , 2003, Optics express.

[49]  Kevin Winter,et al.  Remote sensing of cyanobacteria-dominant algal blooms and water quality parameters in Zeekoevlei, a small hypertrophic lake, using MERIS , 2010 .

[50]  J. Kirk,et al.  Monte Carlo study of the nature of the underwater light field in, and the relationships between optical properties of, turbid yellow waters , 1981 .

[51]  Daniel R. Fuhrmann,et al.  A CFAR adaptive matched filter detector , 1992 .

[52]  Zhongping Lee,et al.  Applying narrowband remote-sensing reflectance models to wideband data. , 2009, Applied optics.

[53]  P A Keller,et al.  Comparison of two inversion techniques of a semi-analytical model for the determination of lake water constituents using imaging spectrometry data. , 2001, The Science of the total environment.

[54]  Alexander Berk,et al.  Remote bathymetry of the littoral zone from AVIRIS, LASH, and QuickBird imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[55]  T. Kutser,et al.  A hyperspectral model for interpretation of passive optical remote sensing data from turbid lakes. , 2001, The Science of the total environment.

[56]  A. Morel Optical properties of pure water and pure sea water , 1974 .

[57]  Lin Li,et al.  Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin , 2008 .

[58]  K. Baker,et al.  Optical properties of the clearest natural waters (200-800 nm). , 1981, Applied optics.

[59]  Kendall L. Carder,et al.  Performance of the MODIS semi-analytical ocean color algorithm for chlorophyll-a , 2004 .

[60]  K. Carder,et al.  Absorption Spectrum of Phytoplankton Pigments Derived from Hyperspectral Remote-Sensing Reflectance , 2004 .

[61]  R. Bukata,et al.  Remote sensing reflectance and its relationship to optical properties of natural waters , 1996 .

[62]  G. Campbell,et al.  An Introduction to Environmental Biophysics , 1977 .

[63]  Wojciech M. Klonowski,et al.  Retrieving key benthic cover types and bathymetry from hyperspectral imagery , 2007 .

[64]  Audrey Minghelli-Roman,et al.  Bathymetric Estimation Using MERIS Images in Coastal Sea Waters , 2007, IEEE Geoscience and Remote Sensing Letters.

[65]  James W. Brown,et al.  A semianalytic radiance model of ocean color , 1988 .

[66]  ZhongPing Lee,et al.  Effects of molecular and particle scatterings on the model parameter for remote-sensing reflectance. , 2004, Applied optics.

[67]  H. Gordon,et al.  Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean. , 1975, Applied optics.

[68]  Wilson Rivera,et al.  Sensitivity Analysis of a Hyperspectral Inversion Model for Remote Sensing of Shallow Coastal Ecosystems , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[69]  Hendrik Buiteveld,et al.  Optical properties of pure water , 1994, Other Conferences.

[70]  F. Chavez,et al.  Two models for absorption by coloured dissolved organic matter (CDOM) , 2002 .

[71]  Tiit Kutser,et al.  Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing , 2004 .

[72]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[73]  S. Peters,et al.  Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes. , 2001, The Science of the total environment.

[74]  Thomas Heege,et al.  Hyperspectral seafloor mapping and direct bathymetry calculation using HyMap data from the Ningaloo reef and Rottnest Island areas in Western Australia , 2007 .

[75]  Dimitris Manolakis,et al.  Hyperspectral signal models and implications to material detection algorithms , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[76]  David Doxaran,et al.  Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data , 2009 .

[77]  K. Stamnes,et al.  Comparison of numerical models for computing underwater light fields. , 1993, Applied optics.

[78]  R. Arnone,et al.  Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. , 2002, Applied optics.

[79]  Vittorio E. Brando,et al.  Assessment of water quality in Lake Garda (Italy) using Hyperion , 2007 .

[80]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[81]  L. Prieur,et al.  A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters , 1989 .

[82]  Jennifer P. Cannizzaro,et al.  Estimating chlorophyll a concentrations from remote-sensing reflectance in optically shallow waters , 2006 .

[83]  H. Claustre,et al.  Variability in the chlorophyll‐specific absorption coefficients of natural phytoplankton: Analysis and parameterization , 1995 .

[84]  B Gentili,et al.  Diffuse reflectance of oceanic waters. II Bidirectional aspects. , 1993, Applied optics.

[85]  Michael S Twardowski,et al.  Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range. , 2006, Applied optics.

[86]  R. Pasterkamp,et al.  HYDROPT: A fast and flexible method to retrieve chlorophyll-a from multispectral satellite observations of optically complex coastal waters , 2008 .

[87]  C. Mobley,et al.  Hyperspectral remote sensing for shallow waters. I. A semianalytical model. , 1998, Applied optics.

[88]  Peter Gege,et al.  The water color simulator WASI: an integrating software tool for analysis and simulation of optical in situ spectra , 2004, Comput. Geosci..

[89]  C. Mobley Light and Water: Radiative Transfer in Natural Waters , 1994 .

[90]  E. Fry,et al.  Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements. , 1997, Applied optics.

[91]  W. Philpot Radiative transfer in stratified waters: a single-scattering approximation for irradiance. , 1987, Applied optics.

[92]  Stuart R. Phinn,et al.  Efficient radiative transfer model inversion for remote sensing applications , 2009 .

[93]  D. Pierson,et al.  The effects of variability in the inherent optical properties on estimations of chlorophyll a by remote sensing in Swedish freshwaters. , 2001, The Science of the total environment.

[94]  Z. Lee Visible-infrared remote-sensing model and applications for ocean waters. Ph.D. Thesis , 1994 .

[95]  S. J. Sutley,et al.  USGS Digital Spectral Library splib06a , 2007 .

[96]  John T. O. Kirk,et al.  Dependence of relationship between inherent and apparent optical properties of water on solar altitude , 1984 .

[97]  E. LeDrew,et al.  Remote sensing of aquatic coastal ecosystem processes : science and management applications , 2006 .