Production of semi-insulating layers in n-doped InP by Fe implantation

A detailed study of Fe implantation and damage annealing in indium phosphide is presented. The technological goal was to obtain thermally stable semi‐insulating layers in n‐type InP. Different characterization techniques were employed, including structural (x‐ray diffraction, Rutherford backscattering spectrometry, and transmission electron microscopy), chemical (secondary ions mass spectrometry), and electrical (current‐voltage) measurements. Both undoped and n‐type (Sn) doped substrates were implanted with Fe doses ranging from 5×1011 to 2.2×1014 cm−2 and annealed at a temperature of 650 °C. The high doses used to compensate n+ doping caused amorphization of the material. The reordering process of the amorphous layers and its influence on the Fe redistribution properties were studied in detail. The activation of the implanted Fe atoms after annealing was derived. Although the recovery process of the amorphized layer appears to be rather complex, our results show that good crystal quality and full compen...

[1]  Low temperature recrystallization of ion implanted InP , 1993 .

[2]  M. V. Rao,et al.  MeV energy Fe and Co implants to obtain buried high resistance layers and to compensate donor implant tails in InP , 1993 .

[3]  C. Frigeri,et al.  Extended Defects in Fe-Implanted InP After Thermal Annealing , 1993 .

[4]  S. Y. Shiryaev,et al.  Recrystallization of In and P implanted InP , 1993 .

[5]  W. Schlaak,et al.  Defect‐induced redistribution of Fe‐ or Ti‐implanted and annealed GaAs, InAs, GaP, and InP , 1992 .

[6]  J. L. Hansen,et al.  Structural and electrical characteristics of Ge and Se implanted InP after rapid thermal annealing , 1992 .

[7]  W. Schlaak,et al.  Redistribution of Fe and Ti implanted into InP , 1991 .

[8]  M. Denanot,et al.  In situ thermal annealing of InP amorphous layer induced by Si + implantation , 1991 .

[9]  Seong Won Kim,et al.  Current-mode cyclic ADC for low power and high speed applications , 1990 .

[10]  N. Moriya,et al.  Retardation of implantation damage annealing in InP due to local nonstoichiometry , 1990 .

[11]  Stephen J. Pearton,et al.  Ion implantation for isolation of III-V semiconductors , 1990 .

[12]  S. Pearton,et al.  Implant‐induced high‐resistivity regions in InP and InGaAs , 1989 .

[13]  Markus-Christian Amann,et al.  Current confinement and leakage currents in planar buried-ridge-structure laser diodes on n-substrate , 1989 .

[14]  R. Leibenguth,et al.  Iron‐doped semi‐insulating InP grown by chemical beam epitaxy , 1989 .

[15]  A. Yamaguchi,et al.  Activation ratio of Fe in Fe‐doped semi‐insulating InP epitaxial layers grown by liquid phase epitaxy and metalorganic chemical vapor deposition , 1987 .

[16]  S. Forrest,et al.  Semi‐insulating properties of Fe‐implanted InP. I. Current‐limiting properties of n+‐semi‐insulating‐n+ structures , 1985 .

[17]  W. D. Johnston,et al.  Precipitation in Fe‐Doped Semi‐Insulating InP Epitaxial Layer Grown by Metalorganic Chemical Vapor Deposition (MOCVD) , 1985 .

[18]  W. D. Johnston,et al.  A transmission electron microscope study of iron phosphide precipitates in InP crystals , 1985 .

[19]  T. T. Sheng,et al.  Annealing behavior of ion‐implanted Fe in InP , 1985 .

[20]  M. Gauneau,et al.  Further evidence of chromium, manganese, iron, and zinc redistribution in indium phosphide after annealing , 1985 .

[21]  M. H. Lyons,et al.  The interpretation of X-ray rocking curves from III–V semiconductor device structures , 1984 .

[22]  B. Schwartz,et al.  Channeled substrate buried heterostructure InGaAsP/InP laser employing a buried Fe ion implant for current confinement , 1984 .

[23]  J. Poate,et al.  Surface Modification and Alloying: by Laser, Ion, and Electron Beams , 1983 .

[24]  R. Wilson,et al.  Enhanced indium phosphide substrate protection for liquid phase epitaxy growth of indium‐gallium‐arsenide‐phosphide double heterostructure lasers , 1983 .

[25]  M. Gauneau,et al.  Depth profiles of Fe and Cr implants in InP after annealing , 1982 .

[26]  James F. Gibbons,et al.  Stoichiometric disturbances in ion implanted compound semiconductors , 1981 .

[27]  B. Paine,et al.  Ion implantation and low‐temperature epitaxial regrowth of GaAs , 1981 .

[28]  J. P. Lorenzo,et al.  Electron Microscope Study of Annealed SiH2 + Implanted InP , 1980 .

[29]  S. U. Campisano,et al.  Supersaturated solid solutions after solid phase epitaxial growth in Bi‐implanted silicon , 1980 .

[30]  R. Stradling,et al.  A study of the deep acceptor levels of iron in InP , 1979 .

[31]  J. Donnelly,et al.  High-resistivity layers in n-InP produced by Fe ion implantation , 1978 .

[32]  V. Gheorghiu,et al.  Diffusion, solubility, and electrical activity of Co and Fe in InP , 1977 .

[33]  G. Roberts,et al.  The electrical properties of n-type semi-insulating indium phosphide , 1976 .

[34]  Hisao Watanabe,et al.  Semi-insulating properties of Fe-doped InP , 1975 .

[35]  M. Lampert,et al.  Current injection in solids , 1970 .

[36]  D. Taupin,et al.  Théorie dynamique de la diffraction des rayons X par les cristaux déformés , 1964 .

[37]  S. Takagi Dynamical theory of diffraction applicable to crystals with any kind of small distortion , 1962 .

[38]  W. B. Pearson,et al.  A handbook of lattice spacings and structures of metals and alloys , 1958 .