Penalized Quantile Regression for Distributed Big Data Using the Slack Variable Representation
暂无分享,去创建一个
Ye Fan | Nan Lin | Xianjun Yin
[1] B. Mercier,et al. A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .
[2] Michael W. Mahoney,et al. Quantile Regression for Large-Scale Applications , 2013, SIAM J. Sci. Comput..
[3] Paulo Cortez,et al. A Proactive Intelligent Decision Support System for Predicting the Popularity of Online News , 2015, EPIA.
[4] Lei Guan,et al. An Efficient ADMM-Based Algorithm to Nonconvex Penalized Support Vector Machines , 2018, 2018 IEEE International Conference on Data Mining Workshops (ICDMW).
[5] Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.
[6] Wotao Yin,et al. Global Convergence of ADMM in Nonconvex Nonsmooth Optimization , 2015, Journal of Scientific Computing.
[7] Lan Wang,et al. A Parallel Algorithm for Large-Scale Nonconvex Penalized Quantile Regression , 2017 .
[8] Jianqing Fan,et al. ADAPTIVE ROBUST VARIABLE SELECTION. , 2012, Annals of statistics.
[9] Bo Peng,et al. An Iterative Coordinate Descent Algorithm for High-Dimensional Nonconvex Penalized Quantile Regression , 2015 .
[10] Yunzhang Zhu. An Augmented ADMM Algorithm With Application to the Generalized Lasso Problem , 2017 .
[11] Shiqian Ma,et al. ADMM for High-Dimensional Sparse Penalized Quantile Regression , 2018, Technometrics.
[12] Guang Cheng,et al. Distributed inference for quantile regression processes , 2017, The Annals of Statistics.
[13] Liqun Yu,et al. ADMM for Penalized Quantile Regression in Big Data , 2017 .
[14] R. Rockafellar,et al. Prox-regular functions in variational analysis , 1996 .
[15] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[16] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[17] R. Glowinski,et al. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .
[18] Chih-Jen Lin,et al. Distributed Newton Methods for Regularized Logistic Regression , 2015, PAKDD.
[19] D. Hunter,et al. Quantile Regression via an MM Algorithm , 2000 .
[20] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .