Combinatorics of Generalized Motzkin Numbers
暂无分享,去创建一个
[1] Tian-Xiao He,et al. Parametric Catalan Numbers and Catalan Triangles , 2013 .
[2] Wen-jin Woan. A Relation Between Restricted and Unrestricted Weighted Motzkin Paths , 2006 .
[3] Robert Donaghey,et al. Restricted plane tree representations of four Motzkin-Catalan equations , 1977, J. Comb. Theory, Ser. B.
[4] Renzo Sprugnoli,et al. Sequence characterization of Riordan arrays , 2009, Discret. Math..
[5] Xi Chen,et al. Total positivity of Riordan arrays , 2015, Eur. J. Comb..
[6] Hua Sun,et al. A Combinatorial Proof of the Log-Convexity of Catalan-Like Numbers , 2014, J. Integer Seq..
[7] Renzo Sprugnoli,et al. Riordan arrays and combinatorial sums , 1994, Discret. Math..
[8] Li Liu,et al. On the log-convexity of combinatorial sequences , 2007, Adv. Appl. Math..
[9] Frank Harary,et al. The enumeration of tree-like polyhexes † , 1970 .
[10] M. Aigner. Catalan and other numbers: a recurrent theme , 2001 .
[11] Brigitte Maier,et al. Totally Positive Matrices , 2016 .
[12] Martin Aigner,et al. Catalan-like Numbers and Determinants , 1999, J. Comb. Theory, Ser. A.
[13] Bao-Xuan Zhu,et al. Log-convexity and strong q-log-convexity for some triangular arrays , 2013, Adv. Appl. Math..
[14] Robert Donaghey,et al. Motzkin Numbers , 1977, J. Comb. Theory, Ser. A.
[15] Zhi-Wei Sun,et al. Congruences involving generalized central trinomial coefficients , 2010, Science China Mathematics.
[16] Yi Wang,et al. Log-convexity of Aigner–Catalan–Riordan numbers , 2014 .
[17] Toufik Mansour,et al. Motzkin numbers of higher rank: Generating function and explicit expression , 2007 .
[18] Robert A. Sulanke. Bijective Recurrences for Motzkin Paths , 2001, Adv. Appl. Math..
[19] Louis W. Shapiro,et al. The Riordan group , 1991, Discret. Appl. Math..