Successive continuation for locating connecting orbits
暂无分享,去创建一个
[1] John Guckenheimer,et al. On Computing Connecting Orbits: General Algorithm and Applications to the Sine-Gordon and Hodgkin-Huxley Equations (Special Section on Nonlinear Theory and Its Applications) , 1994 .
[2] Yu. A. Kuznetsov,et al. NUMERICAL DETECTION AND CONTINUATION OF CODIMENSION-TWO HOMOCLINIC BIFURCATIONS , 1994 .
[3] L. Chua,et al. A universal circuit for studying and generating chaos. I. Routes to chaos , 1993 .
[4] Mark J. Friedman,et al. Numerical computation of heteroclinic orbits , 1989 .
[5] D. Barden,et al. An introduction to differential manifolds , 2003 .
[6] C. Wu,et al. A Universal Circuit for Studying and Generating Chaos-Part I: Routes , 1993 .
[7] Allan Jepsow,et al. The computation of paths of homoclinic orbits , 1994 .
[8] Henri Berestycki,et al. Travelling fronts in cylinders , 1992 .
[9] Mark J. Friedman,et al. Numerical computation and continuation of invariant manifolds connecting fixed points , 1991 .
[10] N. Anders Petersson,et al. Computation and Stability of Fluxons in a Singularly Perturbed Sine-Gordon Model of the Josephson Junction , 1994, SIAM J. Appl. Math..
[11] E. Dowell,et al. Chaotic Vibrations: An Introduction for Applied Scientists and Engineers , 1988 .
[12] Björn Sandstede,et al. Convergence estimates for the numerical approximation of homoclinic solutions , 1997 .
[13] L. Franquelo,et al. Periodicity and chaos in an autonomous electronic system , 1984 .
[14] Alan R. Champneys,et al. Numerical detection and continuation of codimension-two homoclinic orbits , 1994 .
[15] Wolf-Jürgen Beyn. Global Bifurcations and their Numerical Computation , 1990 .
[16] G. Ermentrout,et al. Analysis of neural excitability and oscillations , 1989 .
[17] Bo Deng. CONSTRUCTING HOMOCLINIC ORBITS AND CHAOTIC ATTRACTORS , 1994 .
[18] J. Dieudonne. Foundations of Modern Analysis , 1969 .
[19] H. B. Keller,et al. Boundary Value Problems on Semi-Infinite Intervals and Their Numerical Solution , 1980 .
[20] Alejandro J. Rodríguez-Luis,et al. A Method for Homoclinic and Heteroclinic Continuation in Two and Three Dimensions , 1990 .
[21] Björn Sandstede,et al. A numerical toolbox for homoclinic bifurcation analysis , 1996 .
[22] H. B. Keller,et al. NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (II): BIFURCATION IN INFINITE DIMENSIONS , 1991 .
[23] Malomed,et al. Vibration modes of a gap soliton in a nonlinear optical medium. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[24] Nadine Aubry,et al. The dynamics of coherent structures in the wall region of a turbulent boundary layer , 1988, Journal of Fluid Mechanics.
[25] Alejandro J. Rodríguez-Luis,et al. A case study for homoclinic chaos in an autonomous electronic circuit: a trip taken from Takens-Bogdanov to Hopf-Sbil'nikov , 1993 .
[26] Mark J. Friedman,et al. Numerical analysis and accurate computation of heteroclinic orbits in the case of center manifolds , 1993 .
[27] Wolf-Jürgen Beyn,et al. The Numerical Computation of Connecting Orbits in Dynamical Systems , 1990 .
[28] Mark J. Friedman,et al. On locating connecting orbits , 1994 .
[29] H. B. Keller. Global Homotopies and Newton Methods , 1978 .
[30] Gene H. Golub,et al. Matrix computations , 1983 .
[31] Mark J. Friedman,et al. Computational methods for global analysis of homoclinic and heteroclinic orbits: A case study , 1993 .
[32] Stephen Schecter,et al. Numerical computation of saddle-node homoclinic bifurcation points , 1993 .
[33] E. Dowell,et al. Chaotic Vibrations: An Introduction for Applied Scientists and Engineers , 1988 .
[34] Peter Gray,et al. Chemical Oscillations and Instabilities: Non-Linear Chemical Kinetics , 1990 .