Dynamics of bright and dark multi-soliton solutions for two higher-order Toda lattice equations for nonlinear waves

[1]  Xiaoyong Wen,et al.  Modulational instability and higher order-rogue wave solutions for the generalized discrete Hirota equation , 2018, Wave Motion.

[2]  Deng-Shan Wang,et al.  Long-time asymptotics and the bright N-soliton solutions of the Kundu–Eckhaus equation via the Riemann–Hilbert approach , 2018 .

[3]  Qiu-Lan Zhao,et al.  A new integrable symplectic map by the binary nonlinearization to the super AKNS system , 2017 .

[4]  Fajun Yu,et al.  Explicit solution and Darboux transformation for a new discrete integrable soliton hierarchy with 4×4 Lax pairs , 2017 .

[5]  B. Malomed,et al.  Higher-order vector discrete rogue-wave states in the coupled Ablowitz-Ladik equations: Exact solutions and stability. , 2016, Chaos.

[6]  Xin-Yue Li,et al.  A Bargmann system and the involutive solutions associated with a new 4-order lattice hierarchy , 2016 .

[7]  Huanhe Dong,et al.  A new integrable symplectic map and the lie point symmetry associated with nonlinear lattice equations , 2016 .

[8]  Wen-Xiu Ma,et al.  Lump solutions to nonlinear partial differential equations via Hirota bilinear forms , 2016, 1607.06983.

[9]  Deng-Shan Wang,et al.  Integrability and exact solutions of a two-component Korteweg-de Vries system , 2016, Appl. Math. Lett..

[10]  Qiu-Lan Zhao,et al.  Binary Bargmann symmetry constraint associated with 3 × 3 discrete matrix spectral problem , 2015 .

[11]  Huanhe Dong,et al.  Generalised (2+1)-dimensional Super MKdV Hierarchy for Integrable Systems in Soliton Theory , 2015 .

[12]  S. Konstantinou-Rizos,et al.  Reduction groups and related integrable difference systems of nonlinear Schrödinger type , 2015, 1503.06406.

[13]  Xi-Xiang Xu,et al.  A deformed reduced semi-discrete Kaup-Newell equation, the related integrable family and Darboux transformation , 2015, Appl. Math. Comput..

[14]  Xiaoyong Wen,et al.  N-Fold Darboux transformation and solitonic interactions for a Volterra lattice system , 2014 .

[15]  C. Elliott,et al.  The Toda Lattice , 2014 .

[16]  Qiu-Lan Zhao,et al.  Two integrable lattice hierarchies and their respective Darboux transformations , 2013, Appl. Math. Comput..

[17]  Xiaoyong Wen Elastic Interaction and Conservation Laws for the Nonlinear Self-Dual Network Equation in Electric Circuit , 2012 .

[18]  Xiaoyong Wen N-Fold Darboux Transformation and Soliton Solutions for Toda Lattice Equation , 2011 .

[19]  Jianke Yang,et al.  Nonlinear Waves in Integrable and Nonintegrable Systems , 2010, Mathematical modeling and computation.

[20]  S. Matsutani,et al.  Quasi-periodic and periodic solutions of the Toda lattice via the hyperelliptic sigma function , 2010, 1008.0509.

[21]  J. Cieśliński Algebraic construction of the Darboux matrix revisited , 2009, 0904.3987.

[22]  Hong-Xiang Yang,et al.  Soliton solutions by Darboux transformation for a Hamiltonian lattice system , 2009 .

[23]  Y. Hon,et al.  A KIND OF EXPLICIT QUASI-PERIODIC SOLUTION AND ITS LIMIT FOR THE TODA LATTICE EQUATION , 2008 .

[24]  Abdul-Majid Wazwaz,et al.  Abundant solitons solutions for several forms of the fifth-order KdV equation by using the tanh method , 2006, Appl. Math. Comput..

[25]  Xue-Qing Zhang Soliton Solution of the Toda Lattice Equation by the Darboux Transformation , 2006 .

[26]  D. J. Kaup,et al.  Variational solutions for the discrete nonlinear Schrödinger equation , 2005, Math. Comput. Simul..

[27]  Zixiang Zhou,et al.  Darboux Transformations in Integrable Systems , 2005 .

[28]  Wenxiu Ma,et al.  Rational solutions of the Toda lattice equation in Casoratian form , 2004 .

[29]  Wenxiu Ma,et al.  Complexiton solutions of the Toda lattice equation , 2004, nlin/0406014.

[30]  Dengyuan Chen,et al.  The conservation laws of some discrete soliton systems , 2002 .

[31]  Q. Park,et al.  Darboux transformation and Crum's formula for multi-component integrable equations , 2001 .

[32]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[33]  C. Schiebold An operator theoretic approach to the Toda lattice equation , 1998 .

[34]  K. Narita Solutions for the Mikhailov-Shabat-Yamilov Difference-Differential Equations and Generalized Solutions for the Volterra and the Toda Lattice Equations , 1998 .

[35]  F. Gesztesy,et al.  New Classes of Toda Soliton Solutions , 1997 .

[36]  C. Gu,et al.  Soliton theory and its applications , 1995 .

[37]  A. Sakhnovich,et al.  Dressing procedure for solutions of non-linear equations and the method of operator identities , 1994 .

[38]  V. Matveev,et al.  Darboux Transformations and Solitons , 1992 .

[39]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[40]  P. Clarkson,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering: References , 1991 .

[41]  T Gui-zhang,et al.  A trace identity and its applications to the theory of discrete integrable systems , 1990 .

[42]  S. Takeno,et al.  Approximate soliton solutions around an exact soliton solution of the toda lattice equation , 1988 .

[43]  S. Novikov,et al.  Theory of Solitons: The Inverse Scattering Method , 1984 .

[44]  J. Nimmo,et al.  Soliton solution of three differential-difference equations in wronskian form , 1983 .

[45]  A. Mikhailov,et al.  The reduction problem and the inverse scattering method , 1981 .

[46]  Morikazu Toda,et al.  Theory Of Nonlinear Lattices , 1981 .

[47]  Ryogo Hirota,et al.  Nonlinear Partial Difference Equations. IV. Bäcklund Transformation for the Discrete-Time Toda Equation , 1978 .

[48]  M. Ablowitz Nonlinear Evolution Equations—Continuous and Discrete , 1977 .

[49]  Mark J. Ablowitz,et al.  A Nonlinear Difference Scheme and Inverse Scattering , 1976 .

[50]  M. Wadati,et al.  Transformation Theories for Nonlinear Discrete Systems , 1976 .

[51]  Chuan-Sheng Liu,et al.  Bäcklund transformation solutions of the Toda lattice equation , 1975 .

[52]  Mark J. Ablowitz,et al.  Nonlinear differential−difference equations , 1975 .

[53]  H. Flaschka On the Toda Lattice. II Inverse-Scattering Solution , 1974 .

[54]  H. Flaschka The Toda lattice. II. Existence of integrals , 1974 .

[55]  R. Hirota Exact N-Soliton Solution of a Nonlinear Lumped Network Equation , 1973 .

[56]  Ryogo Hirota,et al.  Exact N‐soliton solutions of the wave equation of long waves in shallow‐water and in nonlinear lattices , 1973 .

[57]  Morikazu Toda,et al.  Wave Propagation in Anharmonic Lattices , 1967 .

[58]  M. Toda Vibration of a Chain with Nonlinear Interaction , 1967 .