A fully implantable device for diffuse insulin delivery at extraperitoneal site for physiological treatment of type 1 diabetes.

[1]  Eyal Dassau,et al.  Intraperitoneal insulin delivery provides superior glycaemic regulation to subcutaneous insulin delivery in model predictive control‐based fully‐automated artificial pancreas in patients with type 1 diabetes: a pilot study , 2017, Diabetes, obesity & metabolism.

[2]  Spencer P Lake,et al.  Mechanical properties of the abdominal wall and biomaterials utilized for hernia repair. , 2017, Journal of the mechanical behavior of biomedical materials.

[3]  R. Hovorka,et al.  Finding the right route for insulin delivery – an overview of implantable pump therapy , 2017, Expert opinion on drug delivery.

[4]  G. Kenter,et al.  The histophysiology and pathophysiology of the peritoneum. , 2017, Tissue & cell.

[5]  A. Deshmukh Insulin-stimulated glucose uptake in healthy and insulin-resistant skeletal muscle , 2016, Hormone molecular biology and clinical investigation.

[6]  S. Dal,et al.  Portal or subcutaneous insulin infusion: efficacy and impact on liver inflammation , 2015, Fundamental & clinical pharmacology.

[7]  R·布奥,et al.  A chamber for encapsulating secreting cells , 2014 .

[8]  M. Diamond,et al.  The biology of adhesion formation in the peritoneal cavity. , 2014, Seminars in pediatric surgery.

[9]  R. Gans,et al.  Intraperitoneal insulin infusion: treatment option for type 1 diabetes resulting in beneficial endocrine effects beyond glycaemia , 2014, Clinical endocrinology.

[10]  H. Bilo,et al.  Continuous intraperitoneal insulin infusion in type 1 diabetes: a 6-year post-trial follow-up , 2014, BMC Endocrine Disorders.

[11]  Jinzeng Yang Enhanced skeletal muscle for effective glucose homeostasis. , 2014, Progress in molecular biology and translational science.

[12]  E. Bonifacio,et al.  Transplantation of human islets without immunosuppression , 2013, Proceedings of the National Academy of Sciences.

[13]  R. Patel,et al.  Applied peritoneal anatomy. , 2013, Clinical radiology.

[14]  H. Bilo,et al.  Complications of continuous intraperitoneal insulin infusion with an implantable pump. , 2012, World journal of diabetes.

[15]  M. Meurisse,et al.  Pathophysiology and prevention of postoperative peritoneal adhesions. , 2011, World journal of gastroenterology.

[16]  S. Raptis,et al.  Insulin effects in muscle and adipose tissue. , 2011, Diabetes research and clinical practice.

[17]  M. Wallwiener,et al.  Intraperitoneal adhesions--an ongoing challenge between biomedical engineering and the life sciences. , 2011, Journal of biomedical materials research. Part A.

[18]  A. Penfornis,et al.  Evolution of devices in diabetes management. , 2011, Diabetes technology & therapeutics.

[19]  E. Renard,et al.  A reduction in severe hypoglycaemia in type 1 diabetes in a randomized crossover study of continuous intraperitoneal compared with subcutaneous insulin infusion , 2009, Diabetes, obesity & metabolism.

[20]  R. Gans,et al.  Improved Glycemic Control With Intraperitoneal Versus Subcutaneous Insulin in Type 1 Diabetes , 2009, Diabetes Care.

[21]  H. Bilo,et al.  Surgical aspects and complications of continuous intraperitoneal insulin infusion with an implantable pump , 2008, Langenbeck's Archives of Surgery.

[22]  E. Barrett,et al.  Hyperinsulinemia Rapidly Increases Human Muscle Microvascular Perfusion but Fails to Increase Muscle Insulin Clearance , 2007, Diabetes.

[23]  E Renard,et al.  Implantable insulin pumps. A position statement about their clinical use. , 2007, Diabetes & metabolism.

[24]  M. Flessner,et al.  The transport barrier in intraperitoneal therapy. , 2005, American journal of physiology. Renal physiology.

[25]  P. Helms,et al.  The Influence of Peritoneal Surface Area on Dialysis Adequacy , 2005, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[26]  H Gin,et al.  Combined improvements in implantable pump technology and insulin stability allow safe and effective long term intraperitoneal insulin delivery in type 1 diabetic patients: the EVADIAC experience. , 2003, Diabetes & metabolism.

[27]  S. Yamamoto,et al.  Variation of serum alpha2-macroglobulin concentration in healthy rats and rats inoculated with Staphylococcus aureus or subjected to surgery. , 2001, Comparative medicine.

[28]  V. Karsten,et al.  Macrophage activation in type 1 diabetic patients with catheter obstruction during peritoneal insulin delivery with an implantable pump. , 2001, Diabetes care.

[29]  M. Matsuhisa,et al.  Increased responses of glucagon and glucose production to hypoglycemia with intraperitoneal versus subcutaneous insulin treatment. , 2000, Metabolism: clinical and experimental.

[30]  P. Oskarsson,et al.  Continuous intraperitoneal insulin infusion partly restores the glucagon response to hypoglycaemia in type 1 diabetic patients. , 2000, Diabetes & metabolism.

[31]  M. Tauber,et al.  Effect of intraperitoneal insulin delivery on growth hormone binding protein, insulin-like growth factor (IGF)-I, and IGF-binding protein-3 in IDDM , 1996, Diabetologia.

[32]  J. Skyler,et al.  Splanchnic and systemic absorption of intraperitoneal insulin using a new double-tracer method. , 1994, The American journal of physiology.

[33]  A. Caumo,et al.  Peritoneal and subcutaneous absorption of insulin in type I diabetic subjects. , 1993, The Journal of clinical endocrinology and metabolism.

[34]  R. Bergman,et al.  Determination of Portal Insulin Absorption From Peritoneum via Novel Nonisotopic Method , 1990, Diabetes.

[35]  E. A. Vaughn,et al.  The kinetics of peritoneal insulin absorption. , 1981, Metabolism: clinical and experimental.

[36]  R. Eaton,et al.  The peritoneal absorption of insulin in diabetic man: a potential site for a mechanical insulin delivery system. , 1979, Metabolism: clinical and experimental.

[37]  C. Kjellstrand,et al.  Intraperitoneal Insulin for Control of Blood Sugar in Diabetic Patients during Peritoneal Dialysis , 1971, British medical journal.