Inexact accurate partitioned algorithms for fluid-structure interaction problems with finite elasticity in haemodynamics

In this paper we consider the numerical solution of the three-dimensional fluid-structure interaction problem in haemodynamics, in the case of real geometries, physiological data and finite elasticity vessel deformations. We study some new inexact schemes, obtained from semi-implicit approximations, which treat exactly the physical interface conditions while performing just one or few iterations for the management of the interface position and of the fluid and structure non-linearities. We show that such schemes allow to improve the efficiency while preserving the accuracy of the related exact (implicit) scheme. To do this we consider both a simple analytical test case and two real cases of clinical interest in haemodynamics. We also provide an error analysis for a simple differential model problem when a BDF method is considered for the time discretization and only few Newton iterations are performed at each temporal instant.

[1]  Christian Vergara,et al.  Nitsche’s Method for Defective Boundary Value Problems in Incompressibile Fluid-dynamics , 2011, J. Sci. Comput..

[2]  Robert Michael Kirby,et al.  Towards stable coupling methods for high-order discretization of fluid-structure interaction: Algorithms and observations , 2007, J. Comput. Phys..

[3]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[4]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[5]  W. Wall,et al.  Truly monolithic algebraic multigrid for fluid–structure interaction , 2011 .

[6]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics , 2007 .

[7]  F. NOBILE,et al.  An Effective Fluid-Structure Interaction Formulation for Vascular Dynamics by Generalized Robin Conditions , 2008, SIAM J. Sci. Comput..

[8]  C. Vergara,et al.  Flow rate defective boundary conditions in haemodynamics simulations , 2005 .

[9]  Miguel A. Fernández,et al.  ACCELERATION OF A FIXED POINT ALGORITHM FOR FLUID-STRUCTURE INTERACTION USING TRANSPIRATION CONDITIONS , 2003 .

[10]  Miguel A. Fernández,et al.  A projection semi‐implicit scheme for the coupling of an elastic structure with an incompressible fluid , 2007 .

[11]  Alfio Quarteroni,et al.  Cardiovascular mathematics : modeling and simulation of the circulatory system , 2009 .

[12]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[13]  F. Nobile,et al.  Optimization of Robin-Robin partitioned procedures in Fluid-Structure Interaction Problems , 2010 .

[14]  Annalisa Quaini,et al.  Splitting Methods Based on Algebraic Factorization for Fluid-Structure Interaction , 2008, SIAM J. Sci. Comput..

[15]  Tayfun E. Tezduyar,et al.  Solution techniques for the fully discretized equations in computation of fluid–structure interactions with the space–time formulations , 2006 .

[16]  Wolfgang A. Wall,et al.  Coupling strategies for biomedical fluid–structure interaction problems , 2010 .

[17]  Padmanabhan Seshaiyer,et al.  A nonconforming finite element method for fluid–structure interaction problems , 2005 .

[18]  T. Kenner,et al.  Flow and stress characteristics in rigid walled and compliant carotid artery bifurcation models , 2006, Medical and Biological Engineering and Computing.

[19]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[20]  高等学校計算数学学報編輯委員会編,et al.  高等学校計算数学学報 = Numerical mathematics , 1979 .

[21]  Marina Vidrascu,et al.  Explicit Robin–Neumann schemes for the coupling of incompressible fluids with thin-walled structures , 2013 .

[22]  Paolo Crosetto,et al.  Parallel Algorithms for Fluid-Structure Interaction Problems in Haemodynamics , 2011, SIAM J. Sci. Comput..

[23]  Hermann G. Matthies,et al.  Algorithms for strong coupling procedures , 2006 .

[24]  Bruce M. Irons,et al.  A version of the Aitken accelerator for computer iteration , 1969 .

[25]  G. Kassab,et al.  Surrounding tissues affect the passive mechanics of the vessel wall: theory and experiment. , 2007, American journal of physiology. Heart and circulatory physiology.

[26]  Annalisa Quaini,et al.  Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect , 2008 .

[27]  E. Ramm,et al.  Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows , 2007 .

[28]  M. Heil An efficient solver for the fully-coupled solution of large-displacement fluid-structure interaction problems , 2004 .

[29]  Matteo Astorino,et al.  Convergence analysis of a projection semi-implicit coupling scheme for fluid–structure interaction problems , 2010, Numerische Mathematik.

[30]  Alfio Quarteroni,et al.  Numerical Treatment of Defective Boundary Conditions for the Navier-Stokes Equations , 2002, SIAM J. Numer. Anal..

[31]  K. Bathe,et al.  Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction , 2009 .

[32]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[33]  Erik Burman,et al.  Explicit strategies for incompressible fluid‐structure interaction problems: Nitsche type mortaring versus Robin–Robin coupling , 2014 .

[34]  J. Boyle,et al.  Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches , 2008 .

[35]  Fabio Nobile,et al.  Fluid-structure partitioned procedures based on Robin transmission conditions , 2008, J. Comput. Phys..

[36]  Christian Vergara,et al.  Prescription of General Defective Boundary Conditions in Fluid-Dynamics , 2012 .

[37]  Hermann G. Matthies,et al.  Nonlinear fluid–structure interaction problem. Part I: implicit partitioned algorithm, nonlinear stability proof and validation examples , 2011 .

[38]  Christian Vergara,et al.  Flow rate boundary problems for an incompressible fluid in deformable domains: Formulations and solution methods , 2010 .

[39]  Fabio Nobile,et al.  Robin-Robin preconditioned Krylov methods for fluid-structure interaction problems , 2009 .

[40]  Cornel Marius Murea,et al.  A fast method for solving fluid–structure interaction problems numerically , 2009 .

[41]  Yue Yu,et al.  Generalized fictitious methods for fluid-structure interactions: Analysis and simulations , 2013, J. Comput. Phys..

[42]  Fabio Nobile,et al.  Time accurate partitioned algorithms for the solution of fluid–structure interaction problems in haemodynamics , 2013 .

[43]  Charles A. Taylor,et al.  A coupled momentum method for modeling blood flow in three-dimensional deformable arteries , 2006 .

[44]  Fabio Nobile,et al.  Partitioned Algorithms for Fluid-Structure Interaction Problems in Haemodynamics , 2012, Milan Journal of Mathematics.

[45]  Miguel Angel Fernández,et al.  A Newton method using exact jacobians for solving fluid-structure coupling , 2005 .

[46]  W. Wall,et al.  Fixed-point fluid–structure interaction solvers with dynamic relaxation , 2008 .

[47]  J-F Gerbeau,et al.  External tissue support and fluid–structure simulation in blood flows , 2012, Biomechanics and modeling in mechanobiology.

[48]  J. Hyvärinen,et al.  An Arbitrary Lagrangian-Eulerian finite element method , 1998 .

[49]  Alfio Quarteroni,et al.  On the physical consistency between three-dimensional and one-dimensional models in haemodynamics , 2013, J. Comput. Phys..

[50]  Miguel A. Fernández,et al.  Robin Based Semi-Implicit Coupling in Fluid-Structure Interaction: Stability Analysis and Numerics , 2009, SIAM J. Sci. Comput..

[51]  Fabio Nobile,et al.  Numerical approximation of fluid-structure interaction problems with application to haemodynamics , 2001 .

[52]  Wulf G. Dettmer,et al.  On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction , 2008 .