Three-dimensional Si / vertically oriented graphene nanowalls composite for supercapacitor applications

[1]  Chengrong Qin,et al.  Carbonized wood cell chamber-reduced graphene oxide@PVA flexible conductive material for supercapacitor, strain sensing and moisture-electric generation applications , 2021 .

[2]  Chengrong Qin,et al.  Fabrication of high value cellulose nanofibers@Ni foam by non carbonization: various application developed during the preparation , 2021, Cellulose.

[3]  S. Hussain,et al.  Carbon nanocomposite electrodes for electrical double layer capacitor , 2020 .

[4]  Y. Ni,et al.  Non-carbonized porous lignin-free wood as an effective scaffold to fabricate lignin-free Wood@Polyaniline supercapacitor material for renewable energy storage application , 2020 .

[5]  Y. Ni,et al.  A smart paper@polyaniline nanofibers incorporated vitrimer bifunctional device with reshaping, shape-memory and self-healing properties applied in high-performance supercapacitors and sensors , 2020 .

[6]  Mingqi Tang,et al.  Superior Li-storage property of an advanced LiFePO4@C/S-doped graphene for lithium-ion batteries , 2020 .

[7]  U. Cvelbar,et al.  Low-temperature low-power PECVD synthesis of vertically aligned graphene , 2020, Nanotechnology.

[8]  Heguang Liu,et al.  A smart porous wood-supported flower-like NiS/Ni conjunction with vitrimer co-effect as a multifunctional material with reshaping, shape-memory, and self-healing properties for applications in high-performance supercapacitors, catalysts, and sensors , 2020 .

[9]  Y. Javed,et al.  Enhancement in photovoltaic properties of bismuth ferrite/zinc oxide heterostructure solar cell device with graphene/indium tin oxide hybrid electrodes , 2020 .

[10]  Y. Li,et al.  ZnS nanoparticles as the electrode materials for high-performance supercapacitors , 2019 .

[11]  Hongchun Wang,et al.  Graphene nanowalls conformally coated with amorphous/ nanocrystalline Si as high-performance binder-free nanocomposite anode for lithium-ion batteries , 2019, Journal of Power Sources.

[12]  K. Haenen,et al.  3D Hierarchical Boron-Doped Diamond-Multilayered Graphene Nanowalls as an Efficient Supercapacitor Electrode , 2019, The Journal of Physical Chemistry C.

[13]  T. Hadjersi,et al.  Enhancement of Electrochemical Capacitance of Silicon Nanowires Arrays (SiNWs) by Modification with Manganese Dioxide MnO2 , 2019, Silicon.

[14]  Zhaoping Liu,et al.  Silicon/carbon lithium-ion battery anode with 3D hierarchical macro-/mesoporous silicon network: Self-templating synthesis via magnesiothermic reduction of silica/carbon composite , 2019, Journal of Power Sources.

[15]  E. Pascual,et al.  Super-Capacitive Performance of Manganese Dioxide/Graphene Nano-Walls Electrodes Deposited on Stainless Steel Current Collectors , 2019, Materials.

[16]  Bin Zhao,et al.  Three-dimensional porous graphene/nickel cobalt mixed oxide composites for high-performance hybrid supercapacitor , 2018, Ceramics International.

[17]  Chongjun Zhao,et al.  Rose-derived 3D carbon nanosheets for high cyclability and extended voltage supercapacitors , 2018, Electrochimica Acta.

[18]  S. Hussain,et al.  Plasma synthesis of polyaniline enrobed carbon nanotubes for electrochemical applications , 2018 .

[19]  A. Eftekhari The mechanism of ultrafast supercapacitors , 2018 .

[20]  Faxing Wang,et al.  Latest advances in supercapacitors: from new electrode materials to novel device designs. , 2017, Chemical Society reviews.

[21]  B. Sankapal,et al.  Highly conductive energy efficient electroless anchored silver nanoparticles on MWCNTs as a supercapacitive electrode , 2017 .

[22]  C. Lokhande,et al.  Simple Synthesis of NiCo2O4 thin films using Spray Pyrolysis for electrochemical supercapacitor application: A Novel approach , 2017 .

[23]  H. Olin,et al.  Metal-free supercapacitor with aqueous electrolyte and low-cost carbon materials , 2017, Scientific Reports.

[24]  Bo-Hye Kim,et al.  Silica decorated on porous activated carbon nanofiber composites for high-performance supercapacitors , 2016 .

[25]  Bruce Dunn,et al.  Multidimensional materials and device architectures for future hybrid energy storage , 2016, Nature Communications.

[26]  N. H. Idris,et al.  Enhanced Capacitance of Hybrid Layered Graphene/Nickel Nanocomposite for Supercapacitors , 2016, Scientific Reports.

[27]  K. Ganesan,et al.  A comparative study on defect estimation using XPS and Raman spectroscopy in few layer nanographitic structures. , 2016, Physical chemistry chemical physics : PCCP.

[28]  I. B. Dogru,et al.  Flexible supercapacitor electrodes with vertically aligned carbon nanotubes grown on aluminum foils , 2016 .

[29]  N. Xu,et al.  Morphology Effect of Vertical Graphene on the High Performance of Supercapacitor Electrode. , 2016, ACS applied materials & interfaces.

[30]  Lei Zhang,et al.  A review of electrolyte materials and compositions for electrochemical supercapacitors. , 2015, Chemical Society reviews.

[31]  I. Bertóti,et al.  Surface modification of graphene and graphite by nitrogen plasma: Determination of chemical state alterations and assignments by quantitative X-ray photoelectron spectroscopy , 2015 .

[32]  Myeongjin Kim,et al.  Superior electric double layer capacitors using micro- and mesoporous silicon carbide sphere , 2015 .

[33]  Lu Lu,et al.  Fabrication of three-dimensional porous graphene–manganese dioxide composites as electrode materials for supercapacitors , 2015 .

[34]  Weiqi Wang,et al.  Ternary nanocomposite of polyaniline/manganese dioxide/titanium nitride nanowire array for supercapacitor electrode , 2015, Journal of Nanoparticle Research.

[35]  T. Shi,et al.  High-performance all-solid-state flexible supercapacitors based on two-step activated carbon cloth , 2014 .

[36]  Enric Bertran,et al.  Study of CNTs structural evolution during water assisted growth and transfer methodology for electrochemical applications , 2014 .

[37]  D. Pech,et al.  Hydrous RuO2/carbon nanowalls hierarchical structures for all-solid-state ultrahigh-energy-density micro-supercapacitors , 2014 .

[38]  Yun-Sung Lee,et al.  Insertion-type electrodes for nonaqueous Li-ion capacitors. , 2014, Chemical reviews.

[39]  S. Palmas,et al.  Analysis of photocurrent and capacitance of TiO2 nanotube–polyaniline hybrid composites synthesized through electroreduction of an aryldiazonium salt , 2014 .

[40]  J. Keum,et al.  Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[41]  Junhong Chen,et al.  Vertically Oriented Graphene Bridging Active‐Layer/Current‐Collector Interface for Ultrahigh Rate Supercapacitors , 2013, Advanced materials.

[42]  J. Ro,et al.  Kinetics of solid phase crystallization of amorphous silicon analyzed by Raman spectroscopy , 2013 .

[43]  Enric Bertran,et al.  Nitrogen plasma functionalization of carbon nanotubes for supercapacitor applications , 2013, Journal of Materials Science.

[44]  R. Li,et al.  Influence of paper thickness on the electrochemical performances of graphene papers as an anode for lithium ion batteries , 2013 .

[45]  H. Haick,et al.  Hybrid Silicon Nanowires: From Basic Research to Applied Nanotechnology , 2012 .

[46]  G. Bidan,et al.  Highly doped silicon nanowires based electrodes for micro-electrochemical capacitor applications , 2012 .

[47]  M. Wertheimer,et al.  Surface functionalization of graphite and carbon nanotubes by vacuum-ultraviolet photochemical reactions , 2012 .

[48]  Yi Cui,et al.  Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. , 2012, Nature nanotechnology.

[49]  R. Maboudian,et al.  Silicon carbide coated silicon nanowires as robust electrode material for aqueous micro-supercapacitor , 2012 .

[50]  M. Kim,et al.  Silicon carbide nanowires as an electrode material for high temperature supercapacitors , 2012, 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS).

[51]  Xianzhong Sun,et al.  A comparative study of activated carbon-based symmetric supercapacitors in Li2SO4 and KOH aqueous electrolytes , 2012, Journal of Solid State Electrochemistry.

[52]  Kevin C. Leonard,et al.  Improvement of electrochemical capacitor electrodes using SiO2 nanoparticles , 2011 .

[53]  J. Rouzaud,et al.  On a Reliable Structural Characterization of Polished Carbons in Meteorites by Raman Microspectroscopy , 2011 .

[54]  M. Wertheimer,et al.  Ultra-Shallow Chemical Characterization of Organic Thin Films Deposited by Plasma and Vacuum-Ultraviolet, Using Angle- and Excitation Energy-Resolved XPS , 2011 .

[55]  Xiang Feng,et al.  Electrochemical properties of high-power supercapacitors using ordered NiO coated Si nanowire array electrodes , 2011 .

[56]  R. Ruoff,et al.  Review of Best Practice Methods for Determining an Electrode Material's Performance for Ultracapacitors , 2010, 1005.0805.

[57]  Candace K. Chan,et al.  Stepwise nanopore evolution in one-dimensional nanostructures. , 2010, Nano letters.

[58]  Tupei Chen,et al.  Microstructure of Magnetron Sputtered Amorphous SiOx Films: Formation of Amorphous Si Core−Shell Nanoclusters , 2010 .

[59]  B. Park,et al.  Variations in the Raman Spectrum as a Function of the Number \ofGraphene Layers , 2009 .

[60]  M. Dresselhaus,et al.  Studying disorder in graphite-based systems by Raman spectroscopy. , 2007, Physical chemistry chemical physics : PCCP.

[61]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[62]  S. Pitchumani,et al.  New symmetric and asymmetric supercapacitors based on high surface area porous nickel and activated carbon , 2006 .

[63]  Seung M. Oh,et al.  Complex Capacitance Analysis on Leakage Current Appearing in Electric Double-layer Capacitor Carbon Electrode , 2005 .