The deal.II library, Version 9.0

Abstract This paper provides an overview of the new features of the finite element library deal.II version 9.0.

[1]  Paul Steinmann,et al.  Convergence study of the h-adaptive PUM and the hp-adaptive FEM applied to eigenvalue problems in quantum mechanics , 2017, Advanced Modeling and Simulation in Engineering Sciences.

[2]  Martin Kronbichler,et al.  High accuracy mantle convection simulation through modern numerical methods , 2012 .

[3]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[4]  Michael A. Heroux,et al.  Supporting 64-bit global indices in Epetra and other Trilinos packages - Techniques used and lessons learned , 2013, ArXiv.

[5]  E. Heien,et al.  Flexible and scalable particle-in-cell methods for massively parallel computations , 2016, 1612.03369.

[6]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[7]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[8]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[9]  Drew P. Kouri,et al.  Rapid Optimization Library , 2014 .

[10]  Katharina Kormann,et al.  Fast Matrix-Free Evaluation of Discontinuous Galerkin Finite Element Operators , 2017, ACM Trans. Math. Softw..

[11]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[12]  Wolfgang Bangerth,et al.  Data structures and requirements for hp finite element software , 2009, TOMS.

[13]  James Reinders,et al.  Intel® threading building blocks , 2008 .

[14]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[15]  Luca Heltai,et al.  Tools for the Solution of PDEs Defined on Curved Manifolds with deal.II , 2009 .

[16]  Luca Heltai,et al.  π-BEM: A flexible parallel implementation for adaptive, geometry aware, and high order boundary element methods , 2018, Adv. Eng. Softw..

[17]  Guido Kanschat,et al.  Adaptive Multilevel Methods with Local Smoothing for H1- and Hcurl-Conforming High Order Finite Element Methods , 2011, SIAM J. Sci. Comput..

[18]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[19]  Andreas Griewank,et al.  Algorithm 755: ADOL-C: a package for the automatic differentiation of algorithms written in C/C++ , 1996, TOMS.

[20]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[21]  David M. Gay,et al.  Automatic Differentiation of C++ Codes for Large-Scale Scientific Computing , 2006, International Conference on Computational Science.

[22]  BursteddeCarsten,et al.  p4est: Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees , 2011 .

[23]  Martin Kronbichler,et al.  WorkStream -- A Design Pattern for Multicore-Enabled Finite Element Computations , 2016, ACM Trans. Math. Softw..

[24]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[25]  Andrea Walther,et al.  Getting Started with ADOL-C , 2009, Combinatorial Scientific Computing.

[26]  Katharina Kormann,et al.  A generic interface for parallel cell-based finite element operator application , 2012 .

[27]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[28]  Elbridge Gerry Puckett,et al.  Flexible and Scalable Particle‐in‐Cell Methods With Adaptive Mesh Refinement for Geodynamic Computations , 2018, Geochemistry, Geophysics, Geosystems.

[29]  Wolfgang Bangerth,et al.  High accuracy mantle convection simulation through modern numerical methods , 2012 .

[30]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[31]  Carsten Burstedde,et al.  p4est: Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees , 2011, SIAM J. Sci. Comput..

[32]  Russ Rew,et al.  NetCDF: an interface for scientific data access , 1990, IEEE Computer Graphics and Applications.

[33]  Wolfgang Bangerth,et al.  Concepts for Object-Oriented Finite Element Software - the deal.II Library , 1999 .

[34]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[35]  Luca Heltai,et al.  The dealii Library, Version 8.2 , 2015 .

[37]  Luca Heltai,et al.  LinearOperator - A generic, high-level expression syntax for linear algebra , 2016, Comput. Math. Appl..

[38]  Wolfgang Bangerth,et al.  What makes computational open source software libraries successful , 2013 .

[39]  KronbichlerMartin,et al.  Fast Matrix-Free Evaluation of Discontinuous Galerkin Finite Element Operators , 2019 .

[40]  Vicente Hernández,et al.  SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems , 2005, TOMS.

[41]  David Wells,et al.  The deal.II library, version 8.5 , 2013, J. Num. Math..

[42]  Guido Kanschat,et al.  Multilevel methods for discontinuous Galerkin FEM on locally refined meshes , 2004 .

[43]  Patrick R. Amestoy,et al.  Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .

[44]  Martin Kronbichler,et al.  Algorithms and data structures for massively parallel generic adaptive finite element codes , 2011, ACM Trans. Math. Softw..

[45]  Håvard Berland,et al.  NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET , 2005 .

[46]  David Wells,et al.  The deal.II Library, Version 8.4 , 2016, J. Num. Math..

[47]  Jack Dongarra,et al.  LAPACK Users' Guide, 3rd ed. , 1999 .