A Variational Approach to Robust Regression

We consider the problem of regression estimation within a Bayesian framework for models linear in the parameters and where the target variables are contaminated by 'outliers'. We introduce an explicit distribution to explain outlying observations, and utilise a variational approximation to realise a practical inference strategy.

[1]  S. Roberts,et al.  Variational Bayes for non-Gaussian autoregressive models , 2000, Neural Networks for Signal Processing X. Proceedings of the 2000 IEEE Signal Processing Society Workshop (Cat. No.00TH8501).

[2]  Christopher M. Bishop,et al.  Variational Relevance Vector Machines , 2000, UAI.

[3]  Steve R. Waterhouse,et al.  Bayesian Methods for Mixtures of Experts , 1995, NIPS.

[4]  Michael E. Tipping The Relevance Vector Machine , 1999, NIPS.

[5]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.