Computing a Nonnegative Matrix Factorization - Provably

In the nonnegative matrix factorization (NMF) problem we are given an $n \times m$ nonnegative matrix $M$ and an integer $r > 0$. Our goal is to express $M$ as $A W$, where $A$ and $W$ are nonnegative matrices of size $n \times r$ and $r \times m$, respectively. In some applications, it makes sense to ask instead for the product $AW$ to approximate $M$, i.e. (approximately) minimize $\left\lVert{M - AW}_F\right\rVert$, where $\left\lVert\right\rVert_F$, denotes the Frobenius norm; we refer to this as approximate NMF. This problem has a rich history spanning quantum mechanics, probability theory, data analysis, polyhedral combinatorics, communication complexity, demography, chemometrics, etc. In the past decade NMF has become enormously popular in machine learning, where $A$ and $W$ are computed using a variety of local search heuristics. Vavasis recently proved that this problem is NP-complete. (Without the restriction that $A$ and $W$ be nonnegative, both the exact and approximate problems can be solved ...