Warp: A Hardware Platform for Efficient Multimodal Sensing With Adaptive Approximation

In this article, we present Warp, the first open hardware platform designed explicitly to support research in approximate computing. Warp incorporates 21 sensors, computation, and circuit-level facilities designed explicitly to enable approximate computing research, in a 3.6 cm × 3.3 cm × 0.5 cm device. Warp supports a wide range of precision and accuracy versus power and performance tradeoffs.

[1]  Martin C. Rinard,et al.  Crayon: saving power through shape and color approximation on next-generation displays , 2016, EuroSys.

[2]  Andreas Gerstlauer,et al.  High-level synthesis of approximate hardware under joint precision and voltage scaling , 2017, Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017.

[3]  Henry Hoffmann,et al.  Dynamic knobs for responsive power-aware computing , 2011, ASPLOS XVI.

[4]  Luis Ceze,et al.  Architecture support for disciplined approximate programming , 2012, ASPLOS XVII.

[5]  Jacob Sorber,et al.  Flicker: Rapid Prototyping for the Batteryless Internet-of-Things , 2017, SenSys.

[6]  Stanley-Marbell,et al.  Approximating Outside the Processor , 2015 .

[7]  Martin C. Rinard,et al.  Lax: Driver Interfaces for Approximate Sensor Device Access , 2015, HotOS.

[8]  Kathryn S. McKinley,et al.  Uncertain: a first-order type for uncertain data , 2014, ASPLOS.

[9]  Martin C. Rinard,et al.  Verifying quantitative reliability for programs that execute on unreliable hardware , 2013, OOPSLA.

[10]  Martin C. Rinard,et al.  Reducing serial I/O power in error-tolerant applications by efficient lossy encoding , 2016, 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC).

[11]  Richard M. Karp,et al.  Algorithmic methodologies for ultra-efficient inexact architectures for sustaining technology scaling , 2012, CF '12.

[12]  Anand Raghunathan,et al.  AXSERBUS: A quality-configurable approximate serial bus for energy-efficient sensing , 2017, 2017 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED).

[13]  Diana Marculescu,et al.  An 0.9 x 1.2", Low Power, Energy-Harvesting System with Custom Multi-Channel Communication Interface , 2007, 2007 Design, Automation & Test in Europe Conference & Exhibition.

[14]  Dan Grossman,et al.  EnerJ: approximate data types for safe and general low-power computation , 2011, PLDI '11.

[15]  Alanson P. Sample,et al.  A Wirelessly-Powered Platform for Sensing and Computation , 2006, UbiComp.

[16]  David Wetherall,et al.  RFID sensor networks with the Intel WISP , 2008, SenSys '08.

[17]  Brandon Lucia,et al.  A Reconfigurable Energy Storage Architecture for Energy-harvesting Devices , 2018, ASPLOS.

[18]  Diana Marculescu,et al.  A Programming Model and Language Implementation for Concurrent Failure-Prone Hardware , 2006 .