In situ spectroscopic ellipsometry during atomic layer deposition of Pt, Ru and Pd

The preparation of ultra-thin platinum-group metal films, such as Pt, Ru and Pd, by atomic layer deposition (ALD) was monitored in situ using spectroscopic ellipsometry in the photon energy range of 0.75–5 eV. The metals’ dielectric function was parametrized using a ‘flexible’ Kramers–Kronig consistent dielectric function because it was able to provide accurate curve shape control over the optical response of the metals. From this dielectric function, it was possible to extract the film thickness values during the ALD process. The important ALD process parameters, such as the nucleation period and growth per cycle of Pt, Ru and Pd could be determined from the thickness evolution. In addition to process parameters, the film resistivity in particular could be extracted from the modeled dielectric function. Spectroscopic ellipsometry thereby revealed itself as a feasible and valuable technique to be used in research and development applications, as well as for process monitoring during ALD.

[1]  M. Verheijen,et al.  Atomic layer deposition of high-purity palladium films from Pd(hfac)2 and H2 and O2 plasmas , 2014 .

[2]  Y. Chabal,et al.  Precursor design and reaction mechanisms for the atomic layer deposition of metal films , 2013 .

[3]  Ricardo Ruiz,et al.  Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption. , 2013, Nano letters.

[4]  J. Bartha,et al.  In-situ analysis on the initial growth of ultra-thin ruthenium films with atomic layer deposition , 2013 .

[5]  Chang Soo Kim,et al.  In situ control of oxygen vacancies in TiO2 by atomic layer deposition for resistive switching devices , 2013, Nanotechnology.

[6]  M. Verheijen,et al.  Influence of Oxygen Exposure on the Nucleation of Platinum Atomic Layer Deposition: Consequences for Film Growth, Nanopatterning, and Nanoparticle Synthesis , 2013 .

[7]  M. Verheijen,et al.  Supported Core/Shell Bimetallic Nanoparticles Synthesis by Atomic Layer Deposition , 2012 .

[8]  M. Verheijen,et al.  Real time in situ spectroscopic ellipsometry of the growth and plasmonic properties of au nanoparticles on SiO2 , 2012, Nano Research.

[9]  Johann W. Bartha,et al.  Monitoring atomic layer deposition processes in situ and in real-time by spectroscopic ellipsometry , 2011, 2011 Semiconductor Conference Dresden.

[10]  S. George,et al.  Surface poisoning in the nucleation and growth of palladium atomic layer deposition with Pd(hfac)(2) and formalin , 2011 .

[11]  J. Elam,et al.  Subnanometer Palladium Particles Synthesized by Atomic Layer Deposition , 2011 .

[12]  Steven M. George,et al.  Nucleation and growth of Pt atomic layer deposition on Al2O3 substrates using (methylcyclopentadienyl)-trimethyl platinum and O2 plasma , 2011 .

[13]  F. Roozeboom,et al.  Atomic layer deposition of Ru from CpRu(CO)2Et using O2 gas and O2 plasma , 2011 .

[14]  F. Roozeboom,et al.  Remote plasma ALD of SrTiO3 using cyclopentadienlyl-based Ti and Sr precursors , 2011 .

[15]  Claudia Ambrosch-Draxl,et al.  Relativistic effects on the linear optical properties of Au, Pt, Pb and W , 2010 .

[16]  van de Mcm Richard Sanden,et al.  Optical constants of graphene measured by spectroscopic ellipsometry , 2010 .

[17]  Mikko Ritala,et al.  MeCp)Ir(CHD) and molecular oxygen as precursors in atomic layer deposition of iridium , 2010 .

[18]  M. Sadeghi,et al.  Enhancement of optical quality in metamorphic quantum wells using dilute nitride buffers , 2010 .

[19]  J. Elam,et al.  Supported ru-pt bimetallic nanoparticle catalysts prepared by atomic layer deposition. , 2010, Nano letters.

[20]  Robert E. Peale,et al.  Surface and grain-boundary scattering in nanometric Cu films , 2010 .

[21]  Van de Sanden,et al.  B-spline parametrization of the dielectric function applied to spectroscopic ellipsometry on amorphous carbon , 2009 .

[22]  A. Roos,et al.  Real time characterization of hydrogenation mechanism of palladium thin films by in situ spectroscopic ellipsometry , 2009 .

[23]  Christoph Adelmann,et al.  High-k dielectrics for future generation memory devices (Invited Paper) , 2009 .

[24]  Phl Peter Notten,et al.  Remote plasma ALD of platinum and platinum oxide films , 2009 .

[25]  M. Dressel,et al.  Dielectric properties of ultrathin metal films around the percolation threshold , 2009, 0904.4335.

[26]  Sbs Stephan Heil,et al.  In situ spectroscopic ellipsometry as a versatile tool for studying atomic layer deposition , 2009 .

[27]  M. Hersam,et al.  Controlled growth of platinum nanoparticles on strontium titanate nanocubes by atomic layer deposition. , 2009, Small.

[28]  F. Eftekhari,et al.  Kramers-Kronig-constrained variational dielectric fitting and the reflectance of a thin film on a substrate. , 2008, Applied optics.

[29]  Blaine D. Johs,et al.  Dielectric function representation by B‐splines , 2008 .

[30]  A. Kuzmenko,et al.  Universal optical conductance of graphite. , 2007, Physical review letters.

[31]  Hcm Harm Knoops,et al.  Synthesis and in situ characterization of low-resistivity TaNx films by remote plasma atomic layer deposition , 2007 .

[32]  Wmm Erwin Kessels,et al.  Plasma and thermal ALD of Al2O3 in a commercial 200 mm ALD reactor , 2007 .

[33]  A. Kaloyeros,et al.  Properties of ultrathin platinum deposited by atomic layer deposition for nanoscale copper-metallization schemes , 2007 .

[34]  V. Filippov,et al.  Optical study of electronic structure and electron-phonon coupling in ZrB12 , 2007 .

[35]  M. Ritala,et al.  Ruthenium/aerogel nanocomposites via atomic layer deposition , 2007 .

[36]  C. Hwang,et al.  Atomic Layer Deposition of Ru Thin Films Using 2,4-(Dimethylpentadienyl)(ethylcyclopentadienyl)Ru by a Liquid Injection System , 2007 .

[37]  Wmm Erwin Kessels,et al.  Low-Temperature Deposition of TiN by Plasma-Assisted Atomic Layer Deposition , 2006 .

[38]  X. Zhao,et al.  Optical and thermodynamic properties of the high-temperature superconductor HgBa 2 CuO 4+δ , 2006, cond-mat/0610538.

[39]  E Erik Langereis,et al.  Plasma-assisted atomic layer deposition of Al2O3 moisture permeation barriers on polymers , 2006 .

[40]  Ki-Bum Kim,et al.  Evaluation of integrity and barrier performance of atomic layer deposited WNxCy films on plasma enhanced chemical vapor deposited SiO2 for Cu metallization , 2006 .

[41]  Sbs Stephan Heil,et al.  In situ spectroscopic ellipsometry study on the growth of ultrathin TiN films by plasma-assisted atomic layer deposition , 2006 .

[42]  T. Noh,et al.  Dielectric constants of Ir, Ru, Pt, and IrO 2 : Contributions from bound charges , 2006, cond-mat/0607027.

[43]  F. Carbone,et al.  Optical properties of bcc transition metals in the range 0-40 eV , 2006 .

[44]  W. Kessels,et al.  Initial growth and properties of atomic layer deposited TiN films studied by in situ spectroscopic ellipsometry , 2005 .

[45]  A. Kuzmenko,et al.  Kramers–Kronig constrained variational analysis of optical spectra , 2005 .

[46]  Sbs Stephan Heil,et al.  Plasma-assisted atomic layer deposition of TiN monitored by in situ spectroscopic ellipsometry , 2005 .

[47]  Wilfried Vandervorst,et al.  Island growth as a growth mode in atomic layer deposition: A phenomenological model , 2004 .

[48]  Se‐Hun Kwon,et al.  PEALD of a Ruthenium Adhesion Layer for Copper Interconnects , 2004 .

[49]  P. Xu,et al.  Effect of particle shape on the effective dielectric response of nanocomposite close to the percolation threshold , 2004 .

[50]  B. Johs,et al.  Dielectric function of thin metal films by combined in situ transmission ellipsometry and intensity measurements , 2004 .

[51]  R. Capelli,et al.  Calculation of optical properties within the Local Density Approximation to Density Functional Theory: application to palladium , 2002 .

[52]  E. H. Sondheimer,et al.  The mean free path of electrons in metals , 2001 .

[53]  H. Tompkins,et al.  Spectroscopic ellipsometry measurements of thin metal films , 2000 .

[54]  S. Zollner Ellipsometry of platinum films on silicon , 2000 .

[55]  W. Henrion,et al.  Optical Characterization of Ru2Si3 and Ru2Ge3 by Various Spectroscopic Methods and by Band Structure Calculations , 1999 .

[56]  W. McGahan,et al.  Spectroscopic Ellipsometry and Reflectometry: A User's Guide , 1999 .

[57]  Craig M. Herzinger,et al.  Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation , 1998 .

[58]  I. Lundström,et al.  Air pockets in thin porous platinum films studied by spectroscopic ellipsometry , 1997 .

[59]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[60]  H. Nguyen,et al.  Simultaneous real‐time spectroscopic ellipsometry and reflectance for monitoring thin‐film preparation , 1994 .

[61]  John A. Woollam,et al.  Techniques for ellipsometric measurement of the thickness and optical constants of thin absorbing films , 1993 .

[62]  William H. Press,et al.  Numerical recipes in FORTRAN (2nd ed.): the art of scientific computing , 1992 .

[63]  D L Mann,et al.  Introductory Statistics , 1991 .

[64]  R. Chambers Electrons in Metals and Semiconductors , 1990 .

[65]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[66]  J. H. Weaver,et al.  Low-energy interband absorption in Pd , 1975 .

[67]  J. H. Weaver Optical properties of Rh, Pd, Ir, and Pt , 1975 .

[68]  R. W. Christy,et al.  Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd , 1974 .

[69]  M. Shatzkes,et al.  Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces , 1970 .

[70]  M. Shatzkes,et al.  ELECTRICAL RESISTIVITY MODEL FOR POLYCRYSTALLINE FILMS: THE CASE OF SPECULAR REFLECTION AT EXTERNAL SURFACES , 1969 .

[71]  Stephen B. Soffer,et al.  Statistical Model for the Size Effect in Electrical Conduction , 1967 .

[72]  Klaus Fuchs,et al.  The conductivity of thin metallic films according to the electron theory of metals , 1938, Mathematical Proceedings of the Cambridge Philosophical Society.

[73]  F. Roozeboom,et al.  Plasma-Assisted Atomic Layer Deposition of SrTiO3: Stoichiometry and Crystallinity Study by Spectroscopic Ellipsometry , 2011, ECS Transactions.

[74]  Johann W. Bartha,et al.  In-situ real-time ellipsometric investigations during the atomic layer deposition of ruthenium: A process development from [(ethylcyclopentadienyl)(pyrrolyl)ruthenium] and molecular oxygen , 2012 .

[75]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[76]  H. Fujiwara,et al.  Spectroscopic Ellipsometry: Principles and Applications , 2007 .

[77]  C. J. Smithells,et al.  Smithells metals reference book , 1949 .