Review Article: Flow battery systems with solid electroactive materials

Energy storage is increasingly important for a diversity of applications. Batteries can be used to store solar or wind energy providing power when the Sun is not shining or wind speed is insufficient to meet power demands. For large scale energy storage, solutions that are both economically and environmentally friendly are limited. Flow batteries are a type of battery technology which is not as well-known as the types of batteries used for consumer electronics, but they provide potential opportunities for large scale energy storage. These batteries have electrochemical recharging capabilities without emissions as is the case for other rechargeable battery technologies; however, with flow batteries, the power and energy are decoupled which is more similar to the operation of fuel cells. This decoupling provides the flexibility of independently designing the power output unit and energy storage unit, which can provide cost and time advantages and simplify future upgrades to the battery systems. One major ch...

[1]  Haixia Wu,et al.  Composites of Graphene and LiFePO4 as Cathode Materials for Lithium-Ion Battery: A Mini-review , 2014, Nano-Micro Letters.

[2]  W. Mai,et al.  A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials , 2016, Nano Research.

[3]  Gareth H McKinley,et al.  Polysulfide flow batteries enabled by percolating nanoscale conductor networks. , 2014, Nano letters.

[4]  Dongwook Shin,et al.  Electrochemical Properties of Li1+xCoO2 Synthesized for All-Solid-State Lithium Ion Batteries with Li2S-P2S5 Glass-Ceramics Electrolyte , 2015 .

[5]  J. Janek,et al.  Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na(0.7)CoO2. , 2014, Physical chemistry chemical physics : PCCP.

[6]  G. Guan,et al.  Nanostructured catalysts for electrochemical water splitting: current state and prospects , 2016 .

[7]  X. Sun,et al.  Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries , 2012 .

[8]  W. Craig Carter,et al.  Modeling the hydrodynamic and electrochemical efficiency of semi-solid flow batteries , 2012 .

[9]  M. Youssry,et al.  Electronic vs Ionic Limitations to Electrochemical Performance in Li4Ti5O12-Based Organic Suspensions for Lithium-Redox Flow Batteries , 2014 .

[10]  Jingjing Su,et al.  Synthesis of bowl-like mesoporous LiFePO4/C composites as cathode materials for lithium ion batteries , 2014 .

[11]  Ding Zhang,et al.  Preparation of spherical hierarchical LiNi0.5Mn1.5O4 with high electrochemical performances by a novel composite co-precipitation method for 5 V lithium ion secondary batteries , 2014 .

[12]  Lu Wang,et al.  Electrochemical Behavior of Polyaniline Microparticle Suspension as Flowing Anode for Rechargeable Lead Dioxide Flow Battery , 2014 .

[13]  R. Boom,et al.  Suspension flow in microfluidic devices--a review of experimental techniques focussing on concentration and velocity gradients. , 2012, Advances in colloid and interface science.

[14]  M. Cerbelaud,et al.  Numerical and experimental study of suspensions containing carbon blacks used as conductive additives in composite electrodes for lithium batteries. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[15]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[16]  Chunsheng Wang,et al.  Graphene-bonded and -encapsulated si nanoparticles for lithium ion battery anodes. , 2013, Small.

[17]  Hongxiao Yang,et al.  A simple and inexpensive synthesis route for LiFePO4/C nanoparticles by co-precipitation , 2013 .

[18]  Jonn Axsen,et al.  Are Batteries Ready for Plug-in Hybrid Buyers? , 2009 .

[19]  Seung-wook Eom,et al.  Thermal and electrochemical behaviour of C/LixCoO2 cell during safety test , 2008 .

[20]  Jun Chen,et al.  Review—Advanced Carbon-Supported Organic Electrode Materials for Lithium (Sodium)-Ion Batteries , 2015 .

[21]  Kyle C. Smith,et al.  Maximizing Energetic Efficiency in Flow Batteries Utilizing Non-Newtonian Fluids , 2014 .

[22]  Shumei Dou Review and prospect of layered lithium nickel manganese oxide as cathode materials for Li-ion batteries , 2013, Journal of Solid State Electrochemistry.

[23]  Yarong Wang,et al.  A Li-liquid cathode battery based on a hybrid electrolyte. , 2011, ChemSusChem.

[24]  T. L. Smith,et al.  Intrinsic viscosities and other rheological properties of flocculated suspensions of nonmagnetic and magnetic ferric oxides , 1979 .

[25]  M. Youssry,et al.  Surfactant for Enhanced Rheological, Electrical, and Electrochemical Performance of Suspensions for Semisolid Redox Flow Batteries and Supercapacitors , 2014 .

[26]  Patricia E. Gharagozloo,et al.  A Benchmark Study on the Thermal Conductivity of Nanofluids , 2009 .

[27]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[28]  Yongxin An,et al.  Optimized electrochemical performance of three-dimensional porous LiFePO4/C microspheres via microwave irradiation assisted synthesis , 2014 .

[29]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[30]  Lu Wang,et al.  Electrochemical study on polypyrrole microparticle suspension as flowing anode for manganese dioxide rechargeable flow battery , 2014 .

[31]  Charles W. Monroe,et al.  Degradation mechanisms in the non-aqueous vanadium acetylacetonate redox flow battery , 2012 .

[32]  Kyoung-Hee Shin,et al.  A metal-free and all-organic redox flow battery with polythiophene as the electroactive species , 2014 .

[33]  Feng Wu,et al.  Ionic liquid-based electrolyte with binary lithium salts for high performance lithium-sulfur batteries , 2015 .

[34]  Gary M. Koenig,et al.  Electrochemical Evaluation of Suspensions of Lithium-Ion Battery Active Materials as an Indicator of Rate Capability , 2017 .

[35]  F. Kanoufi,et al.  Electrochemical detection of single microbeads manipulated by optical tweezers in the vicinity of ultramicroelectrodes. , 2013, Analytical chemistry.

[36]  Yi Cui,et al.  Electrochemical characterization of LiCoO2 as rechargeable electrode in aqueous LiNO3 electrolyte , 2011 .

[37]  Alan C. West,et al.  Effect of Electrolyte Composition on Lithium Dendrite Growth , 2008 .

[38]  Robert B. Jackson,et al.  Opportunities and barriers to pumped-hydro energy storage in the United States , 2011 .

[39]  Martin Winter,et al.  Toward Na-ion Batteries—Synthesis and Characterization of a Novel High Capacity Na Ion Intercalation Material , 2013 .

[40]  Daniel H. Doughty,et al.  A General Discussion of Li Ion Battery Safety , 2012 .

[41]  Francesco De Angelis,et al.  Review on recent progress of nanostructured anode materials for Li-ion batteries , 2014 .

[42]  Wei-Jun Zhang Structure and performance of LiFePO 4 cathode materials: A review , 2011 .

[43]  Hee‐Tak Kim,et al.  Rechargeable Lithium Sulfur Battery I. Structural Change of Sulfur Cathode During Discharge and Charge , 2003 .

[44]  N. Brandon,et al.  A study on Pb2+/Pb electrodes for soluble lead redox flow cells prepared with methanesulfonic acid and recycled lead , 2016, Journal of Applied Electrochemistry.

[45]  Michael Grätzel,et al.  Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery. , 2013, Physical chemistry chemical physics : PCCP.

[46]  Dean J. Miller,et al.  Surface Modification Approach to TiO2 Nanofluids with High Particle Concentration, Low Viscosity, and Electrochemical Activity. , 2015, ACS applied materials & interfaces.

[47]  Heesung Park,et al.  A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles , 2013 .

[48]  Li Zhang,et al.  Study of zinc electrodes for single flow zinc/nickel battery application , 2008 .

[49]  Laxmidhar Besra,et al.  A review on fundamentals and applications of electrophoretic deposition (EPD) , 2007 .

[50]  Frank C. Walsh,et al.  Characterization of a zinc–cerium flow battery , 2011 .

[51]  Jeffrey W. Fergus,et al.  Recent developments in cathode materials for lithium ion batteries , 2010 .

[52]  Yu Ding,et al.  A Membrane-Free Ferrocene-Based High-Rate Semiliquid Battery. , 2015, Nano letters.

[53]  I. Zhitomirsky,et al.  A review of new methods of surface chemical modification, dispersion and electrophoretic deposition of metal oxide particles , 2014 .

[54]  U. Schubert,et al.  An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System. , 2016, Angewandte Chemie.

[55]  B. Liedberg,et al.  Electrically conducting composites of colloidal polypyrrole and methylcellulose , 1986 .

[56]  Y. Gogotsi,et al.  Materials for suspension (semi-solid) electrodes for energy and water technologies. , 2015, Chemical Society reviews.

[57]  Gareth Kear,et al.  Development of the all‐vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects , 2012 .

[58]  Y. Gogotsi,et al.  Composite manganese oxide percolating networks as a suspension electrode for an asymmetric flow capacitor. , 2014, ACS applied materials & interfaces.

[59]  Zheng Li,et al.  Electronic Supplementary Information Aqueous Semi-Solid Flow Cell: Demonstration and Analysis , 2013 .

[60]  J. Tu,et al.  High-energy cathode materials for Li-ion batteries: A review of recent developments , 2015 .

[61]  Nigel P. Brandon,et al.  Application of carbon materials in redox flow batteries , 2014 .

[62]  S. Sen,et al.  Engineering nanofluid electrodes: controlling rheology and electrochemical activity of γ-Fe2O3 nanoparticles , 2015, Journal of Nanoparticle Research.

[63]  Gary M. Koenig,et al.  High‐Performance LiCoO2 Sub‐Micrometer Materials from Scalable Microparticle Template Processing , 2016 .

[64]  Zongping Shao,et al.  A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives , 2015 .

[65]  Shengbo Zhang,et al.  Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions , 2013 .

[66]  Kaoru Dokko,et al.  Ionic Liquid Electrolytes for Lithium–Sulfur Batteries , 2013 .

[67]  Gareth H. McKinley,et al.  A low-dissipation, pumpless, gravity-induced flow battery , 2016 .

[68]  Xiaodong Li,et al.  Electrode Nanomaterials for Room Temperature Sodium-Ion Batteries: A Review. , 2015, Journal of Nanoscience and Nanotechnology.

[69]  Volker Presser,et al.  Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation , 2014 .

[70]  Rajesh Kumar,et al.  Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review , 2013 .

[71]  Qing Wang,et al.  Redox targeting of insulating electrode materials: a new approach to high-energy-density batteries. , 2006, Angewandte Chemie.

[72]  Kelsey B. Hatzell,et al.  Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization. , 2015, Environmental science & technology.

[73]  Gary M. Koenig,et al.  Carbon-free Solid Dispersion LiCoO2 Redox Couple Characterization and Electrochemical Evaluation for All Solid Dispersion Redox Flow Batteries , 2017 .

[74]  P. C Frost,et al.  Developments in lead–acid batteries: a lead producer's perspective , 1999 .

[75]  F. Mugele,et al.  Mechanical History Dependence in Carbon Black Suspensions for Flow Batteries: A Rheo-Impedance Study , 2017, Langmuir : the ACS journal of surfaces and colloids.

[76]  W. Ostwald Ueber die rechnerische Darstellung des Strukturgebietes der Viskosität , 1929 .

[77]  Dominique Guyomard,et al.  Formulation of flowable anolyte for redox flow batteries: Rheo-electrical study , 2015 .

[78]  Kensuke Takechi,et al.  A Highly Concentrated Catholyte Based on a Solvate Ionic Liquid for Rechargeable Flow Batteries , 2015, Advanced materials.

[79]  R. Compton,et al.  Gold nanoparticles show electroactivity: counting and sorting nanoparticles upon impact with electrodes. , 2012, Chemical communications.

[80]  Lelia Cosimbescu,et al.  TEMPO‐Based Catholyte for High‐Energy Density Nonaqueous Redox Flow Batteries , 2014, Advanced materials.

[81]  Ermete Antolini,et al.  LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties , 2004 .

[82]  R. Gordon,et al.  A Neutral pH Aqueous Organic–Organometallic Redox Flow Battery with Extremely High Capacity Retention , 2017 .

[83]  C. Ponce de León,et al.  Redox flow cells for energy conversion , 2006 .

[84]  Gareth Kear,et al.  A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II) Part VIII. The cycling of a 10 cm × 10 cm flow cell , 2010 .

[85]  Yi Cui,et al.  Magnetic Field-Controlled Lithium Polysulfide Semiliquid Battery with Ferrofluidic Properties. , 2015, Nano letters.

[86]  Ping He,et al.  Li‐Redox Flow Batteries Based on Hybrid Electrolytes: At the Cross Road between Li‐ion and Redox Flow Batteries , 2012 .

[87]  Xueping Gao,et al.  Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres , 2010 .

[88]  Huamin Zhang,et al.  Shunt current loss of the vanadium redox flow battery , 2011 .

[89]  Syed Mubeen,et al.  Solid Suspension Flow Batteries Using Earth Abundant Materials. , 2016, ACS applied materials & interfaces.

[90]  Alán Aspuru-Guzik,et al.  A redox-flow battery with an alloxazine-based organic electrolyte , 2016, Nature Energy.

[91]  Xianfeng Li,et al.  A novel single flow zinc–bromine battery with improved energy density , 2013 .

[92]  A. Manthiram,et al.  Challenges and prospects of lithium-sulfur batteries. , 2013, Accounts of chemical research.

[93]  Matsuhiko Nishizawa,et al.  Kinetic Characterization of Single Particles of LiCoO2 by AC Impedance and Potential Step Methods , 2001 .

[94]  Michael P. Marshak,et al.  A metal-free organic–inorganic aqueous flow battery , 2014, Nature.

[95]  Francesca Soavi,et al.  A novel concept of Semi-solid, Li Redox Flow Air (O2) Battery: a breakthrough towards high energy and power batteries , 2016 .

[96]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[97]  Claus Daniel,et al.  Optimization of LiFePO4 nanoparticle suspensions with polyethyleneimine for aqueous processing. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[98]  Kisuk Kang,et al.  Phase Stability Study of Li1-xMnPO4 (0 <= x <= 1) Cathode for Li Rechargeable Battery , 2009 .

[99]  Cui Miao,et al.  A novel synthesis and characterization of LiFePO4 and LiFePO4/C as a cathode material for lithium-ion battery , 2014 .

[100]  A. Manthiram,et al.  Nanoscale Ni/Mn Ordering in the High Voltage Spinel Cathode LiNi0.5Mn1.5O4 , 2016 .

[101]  Y. Gogotsi,et al.  Effects of flow cell design on charge percolation and storage in the carbon slurry electrodes of electrochemical flow capacitors , 2014 .

[102]  Meilin Liu,et al.  Transport properties of LiMn2O4 electrode materials for lithium-ion batteries , 1998 .

[103]  Stanley C. S. Lai,et al.  Impact of Surface Chemistry on Nanoparticle-Electrode Interactions in the Electrochemical Detection of Nanoparticle Collisions. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[104]  T. Yamamura,et al.  Characterization of tetraketone ligands for active materials of all-uranium redox flow battery , 2004 .

[105]  Zhenguo Yang,et al.  Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review , 2009 .

[106]  C. Liang,et al.  Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery , 2009 .

[107]  Lingyun Liu,et al.  A review of blended cathode materials for use in Li-ion batteries , 2014 .

[108]  T. Zhao,et al.  A novel iron-lead redox flow battery for large-scale energy storage , 2017 .

[109]  Jean-Marie Tarascon,et al.  Silicon-Based Non Aqueous Anolyte for Li Redox-Flow Batteries , 2013 .

[110]  Victor E. Brunini,et al.  Electroactive-Zone Extension in Flow-Battery Stacks , 2014 .

[111]  Jun Chen,et al.  High‐Power Alkaline Zn–MnO2 Batteries Using γ‐MnO2 Nanowires/Nanotubes and Electrolytic Zinc Powder , 2005 .

[112]  Tyler J. Petek,et al.  Characterizing Slurry Electrodes Using Electrochemical Impedance Spectroscopy , 2016 .

[113]  O. Trescases,et al.  Predictive Algorithm for Optimizing Power Flow in Hybrid Ultracapacitor/Battery Storage Systems for Light Electric Vehicles , 2013, IEEE Transactions on Power Electronics.

[114]  C. T. Nguyen,et al.  Temperature and particle-size dependent viscosity data for water-based nanofluids : Hysteresis phenomenon , 2007 .

[115]  P. Scales,et al.  Chemical and physical control of the rheology of concentrated metal oxide suspensions , 2001 .

[116]  Patrik Johansson,et al.  A review of electrolytes for lithium–sulphur batteries , 2014 .

[117]  John B Goodenough,et al.  Aqueous cathode for next-generation alkali-ion batteries. , 2011, Journal of the American Chemical Society.

[118]  Ohshima Electrical Conductivity of a Concentrated Suspension of Spherical Colloidal Particles. , 1999, Journal of colloid and interface science.

[119]  Zhonghao Rao,et al.  A review of power battery thermal energy management , 2011 .

[120]  Yutao Li,et al.  A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. , 2015, Chemical Society reviews.

[121]  Yi‐Chun Lu,et al.  A Highly Concentrated Catholyte Enabled by a Low-Melting-Point Ferrocene Derivative , 2017 .

[122]  C. Nan,et al.  Impact of P-Doped in Spinel LiNi0.5Mn1.5O4 on Degree of Disorder, Grain Morphology, and Electrochemical Performance , 2015 .

[123]  Robert Dominko,et al.  Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes , 2007 .

[124]  Bonan Liu,et al.  Review—Nano-Silicon/Carbon Composite Anode Materials Towards Practical Application for Next Generation Li-Ion Batteries , 2015 .

[125]  Bin Li,et al.  Recent Progress in Redox Flow Battery Research and Development , 2012 .

[126]  G. Stucky,et al.  Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition , 2012 .

[127]  Jun Liu,et al.  Optimization of mesoporous carbon structures for lithium–sulfur battery applications , 2011 .

[128]  Michael G. Verde,et al.  Achieving high efficiency and cyclability in inexpensive soluble lead flow batteries , 2013 .

[129]  Joan Ramon Morante,et al.  Static and Dynamic Studies on LiNi1/3Co1/3Mn1/3O2‐Based Suspensions for Semi‐Solid Flow Batteries , 2016, ChemSusChem.

[130]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[131]  Jinyue Yan,et al.  A review on compressed air energy storage: Basic principles, past milestones and recent developments , 2016 .

[132]  Xiqian Yu,et al.  Li-storage in LiFe1/4Mn1/4Co1/4Ni1/4PO4 solid solution , 2008 .

[133]  Nidal Hilal,et al.  Application of Capacitive Deionisation in water desalination: A review , 2014 .

[134]  D.D.L. Chung,et al.  Electrical applications of carbon materials , 2004 .

[135]  Eunkyoung Kim,et al.  Lithium Dendrite Suppression with UV-Curable Polysilsesquioxane Separator Binders. , 2016, ACS applied materials & interfaces.

[136]  Jingxian Yu,et al.  A lithium/polysulfide semi-solid rechargeable flow battery with high output performance , 2014 .

[137]  L. Wen,et al.  Spinel LiNi0.5Mn1.5O4 and its derivatives as cathodes for high-voltage Li-ion batteries , 2010 .

[138]  Christian Fleischer,et al.  Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles , 2014 .

[139]  Z. Deng,et al.  One at a time: counting single-nanoparticle/electrode collisions for accurate particle sizing by overcoming the instability of gold nanoparticles under electrolytic conditions , 2013, Nanotechnology.

[140]  Robert A. Fisher,et al.  Functionalized Carbon Nanotube Supercapacitor Electrodes: A Review on Pseudocapacitive Materials , 2013 .

[141]  J. B. Shamsul,et al.  A Brief Review of Layered Rock Salt Cathode Materials for Lithium Ion Batteries , 2013 .

[142]  R. Savinell,et al.  Current Density Scaling in Electrochemical Flow Capacitors , 2015 .

[143]  J. Eckert,et al.  Hydrothermal carbon-based nanostructured hollow spheres as electrode materials for high-power lithium-sulfur batteries. , 2013, Physical chemistry chemical physics : PCCP.

[144]  R. Compton,et al.  Electrochemical observation of single collision events: fullerene nanoparticles. , 2014, ACS nano.

[145]  Xin-bo Zhang,et al.  The developments and challenges of cerium half-cell in zinc-cerium redox flow battery for energy storage , 2013 .

[146]  Michel Armand,et al.  A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries , 2013, Nature Communications.

[147]  Sanjoy Banerjee,et al.  Gas evolution in a flow-assisted zincnickel oxide battery , 2011 .

[148]  Bryan D. Sawyer,et al.  High-Energy Density Flow Battery Validation , 2011 .

[149]  E. W. Llewellin,et al.  The rheology of suspensions of solid particles , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[150]  Kai Xie,et al.  Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells , 2012 .

[151]  Fikile R. Brushett,et al.  An All‐Organic Non‐aqueous Lithium‐Ion Redox Flow Battery , 2012 .

[152]  Xia Lu,et al.  Sodium Storage and Transport Properties in Layered Na2Ti3O7 for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[153]  Maria Skyllas-Kazacos,et al.  Progress in Flow Battery Research and Development , 2011 .

[154]  Y. Oren,et al.  Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review) , 2008 .

[155]  V. Presser,et al.  Investigation of carbon materials for use as a flowable electrode in electrochemical flow capacitors , 2013 .

[156]  Nicolas E. Holubowitch,et al.  A Highly Soluble Organic Catholyte for Non‐Aqueous Redox Flow Batteries , 2015 .

[157]  Sang Chul Lee,et al.  Effects of Particle Size, Electronic Connectivity, and Incoherent Nanoscale Domains on the Sequence of Lithiation in LiFePO4 Porous Electrodes , 2015, Advanced materials.

[158]  W. Tseng,et al.  Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions , 2003 .

[159]  G. R. Li,et al.  Solar rechargeable redox flow battery based on Li2WO4/LiI couples in dual-phase electrolytes , 2013 .

[160]  T. Arie,et al.  Wearable, Human‐Interactive, Health‐Monitoring, Wireless Devices Fabricated by Macroscale Printing Techniques , 2014 .

[161]  Frank Caruso,et al.  Nanoengineering of particle surfaces. , 2001 .

[162]  L. W. Hruska,et al.  Investigation of Factors Affecting Performance of the Iron‐Redox Battery , 1981 .

[163]  Doron Aurbach,et al.  Design of electrolyte solutions for Li and Li-ion batteries: a review , 2004 .

[164]  B. Zhang,et al.  Chemically resolved transient collision events of single electrocatalytic nanoparticles. , 2014, Journal of the American Chemical Society.

[165]  Lise Daniel,et al.  High voltage spinel oxides for Li-ion batteries: From the material research to the application , 2009 .

[166]  D. Lim,et al.  Effect of carbon coating methods on structural characteristics and electrochemical properties of carbon-coated lithium iron phosphate , 2014 .

[167]  A. Bard,et al.  Tunneling ultramicroelectrode: nanoelectrodes and nanoparticle collisions. , 2014, Journal of the American Chemical Society.

[168]  Ilias Belharouak,et al.  Electrochemistry and safety of Li4Ti5O12 and graphite anodes paired with LiMn2O4 for hybrid electric vehicle Li-ion battery applications , 2011 .

[169]  Daniel A. Steingart,et al.  Zinc morphology in zinc-nickel flow assisted batteries and impact on performance , 2011 .

[170]  D. A. Robinson,et al.  Influence of the redox indicator reaction on single-nanoparticle collisions at mercury- and bismuth-modified Pt ultramicroelectrodes. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[171]  Bo Liang,et al.  Silicon-based materials as high capacity anodes for next generation lithium ion batteries , 2014 .

[172]  Yi-Chun Lu,et al.  A High‐Energy‐Density Multiple Redox Semi‐Solid‐Liquid Flow Battery , 2016 .

[173]  G. Suppes,et al.  Li‐ion battery performance in a convection cell configuration , 2013 .

[174]  N. Wagner,et al.  Colloidal Suspension Rheology: Frontmatter , 2011 .

[175]  A. Stein,et al.  Lithium iron phosphate spheres as cathode materials for high power lithium ion batteries , 2014 .

[176]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[177]  Jun Liu,et al.  Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery , 2015, Nature Communications.

[178]  Christine Minke,et al.  Carbon felt and carbon fiber - A techno-economic assessment of felt electrodes for redox flow battery applications , 2017 .

[179]  V. Presser,et al.  Continuous operation of an electrochemical flow capacitor , 2014 .

[180]  Joaquín Rodríguez-López,et al.  Redox Active Colloids as Discrete Energy Storage Carriers. , 2016, Journal of the American Chemical Society.

[181]  Yuta Maeyoshi,et al.  Effect of organic additives on characteristics of carbon-coated LiCoPO4 synthesized by hydrothermal method , 2017 .

[182]  Yi-Chun Lu,et al.  Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries , 2015, Nature Communications.

[183]  X. Lou,et al.  LiNi(0.5)Mn(1.5)O4 hollow structures as high-performance cathodes for lithium-ion batteries. , 2012, Angewandte Chemie.

[184]  Guoxian Liang,et al.  Size-dependent surface phase change of lithium iron phosphate during carbon coating , 2014, Nature Communications.

[185]  R. Mahamud,et al.  Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity , 2011 .

[186]  Yuping Wu,et al.  Nano-LiCoO2 as cathode material of large capacity and high rate capability for aqueous rechargeable lithium batteries , 2010 .

[187]  Dmitry Belov,et al.  Investigation of the kinetic mechanism in overcharge process for Li-ion battery , 2008 .

[188]  David S. Smith,et al.  Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based α-SiC nanofluids , 2010, Nanotechnology.

[189]  Hao Wang,et al.  Synthesis and electrochemical properties of Li4Ti5O12 spheres and its application for hybrid supercapacitors , 2014 .

[190]  Dongwook Han,et al.  Synergistic effects of various morphologies and Al doping of spinel LiMn2O4 nanostructures on the electrochemical performance of lithium-rechargeable batteries , 2011 .

[191]  Kun Xu,et al.  A Review of Nanostructured TiO2 Application in Li-Ion Batteries , 2013 .

[192]  S. Takai Diffusion coefficient measurement of lithium ion in sintered Li1.33Ti1.67O4 by means of neutron radiography , 1999 .

[193]  Bin Li,et al.  Cost and performance model for redox flow batteries , 2014 .

[194]  Moon Hee Han,et al.  Desalination via a new membrane capacitive deionization process utilizing flow-electrodes , 2013 .

[195]  Minoru Inaba,et al.  Electrochemical AFM study of LiMn2O4 thin film electrodes exposed to elevated temperatures , 2008 .

[196]  Kevin G. Gallagher,et al.  Pathways to Low Cost Electrochemical Energy Storage: A Comparison of Aqueous and Nonaqueous Flow Batteries , 2014 .

[197]  Kai Xie,et al.  Electrochemical performance of lithium/sulfur batteries using perfluorinated ionomer electrolyte with lithium sulfonyl dicyanomethide functional groups as functional separator , 2013 .

[198]  Michael M. Thackeray,et al.  Structure and electrochemistry of lithium cobalt oxide synthesised at 400°C , 1992 .

[199]  Jianqiu Li,et al.  A review on the key issues for lithium-ion battery management in electric vehicles , 2013 .

[200]  M. Shamsipur,et al.  A new design for dry polyaniline rechargeable batteries , 2003 .

[201]  Kevin G. Gallagher,et al.  Simplified calculation of the area specific impedance for battery design , 2011 .

[202]  Arumugam Manthiram,et al.  Self-weaving sulfur-carbon composite cathodes for high rate lithium-sulfur batteries. , 2012, Physical chemistry chemical physics : PCCP.

[203]  Sean E. Doris,et al.  Polysulfide-Blocking Microporous Polymer Membrane Tailored for Hybrid Li-Sulfur Flow Batteries. , 2015, Nano letters.

[204]  Yandong Li,et al.  Nitrogen-doped carbon spheres: A new high-energy-density and long-life pseudo-capacitive electrode material for electrochemical flow capacitor. , 2017, Journal of colloid and interface science.

[205]  Guoming Weng,et al.  A high-energy and low-cost polysulfide/iodide redox flow battery , 2016 .

[206]  C. R. Dennison,et al.  The Electrochemical Flow Capacitor: A New Concept for Rapid Energy Storage and Recovery , 2012 .

[207]  Hong-ran Park,et al.  Flow-Electrode Capacitive Deionization Using an Aqueous Electrolyte with a High Salt Concentration. , 2016, Environmental science & technology.

[208]  Dingqin Shi,et al.  A high power density single flow zinc–nickel battery with three-dimensional porous negative electrode , 2013 .

[209]  Matthew R. Shaner,et al.  Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting , 2015 .

[210]  M. Armand,et al.  Building better batteries , 2008, Nature.

[211]  Pierre-Louis Taberna,et al.  Non-Aqueous Li-Based Redox Flow Batteries , 2012 .

[212]  Martin D Hager,et al.  Poly(TEMPO)/Zinc Hybrid‐Flow Battery: A Novel, “Green,” High Voltage, and Safe Energy Storage System , 2016, Advanced materials.

[213]  Li Zhang,et al.  Preliminary study of single flow zinc-nickel battery , 2007 .

[214]  Ke Gong,et al.  Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs , 2015, Energy &amp; Environmental Science.

[215]  Roy G. Gordon,et al.  Alkaline quinone flow battery , 2015, Science.

[216]  Yongsoo Jeong,et al.  Nanostructured carbon cloth electrode for desalination from aqueous solutions , 2007 .

[217]  D. Lloyd,et al.  The development of an all copper hybrid redox flow battery using deep eutectic solvents , 2013 .

[218]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[219]  M. Ge,et al.  Review of porous silicon preparation and its application for lithium-ion battery anodes , 2013, Nanotechnology.

[220]  Jinxian Wang,et al.  Structure Design and Performance of LiNixCoyMn1‐x‐yO2 Cathode Materials for Lithium‐Ion Batteries: A Review , 2014 .

[221]  Prashant Baredar,et al.  Solar–wind hybrid renewable energy system: A review , 2016 .

[222]  Qing Wang,et al.  Redox Targeting of Anatase TiO2 for Redox Flow Lithium‐Ion Batteries , 2014 .

[223]  Victor E. Brunini,et al.  Semi‐Solid Lithium Rechargeable Flow Battery , 2011 .

[224]  A. Sharma,et al.  Mathematical modeling and experiments of a half-cell redox flow lithium ion battery system , 2016 .

[225]  Ulrich S. Schubert,et al.  Redox‐Flow Batteries: From Metals to Organic Redox‐Active Materials , 2016, Angewandte Chemie.

[226]  Hongyuan Zhao,et al.  A simple and facile one-step strategy to synthesize orthorhombic LiMnO2 nano-particles with excellent electrochemical performance , 2015 .

[227]  B. Vincent,et al.  Dispersions of electrically conducting polypyrrole particles in aqueous media , 1987 .

[228]  Gareth H. McKinley,et al.  Biphasic Electrode Suspensions for Li‐Ion Semi‐solid Flow Cells with High Energy Density, Fast Charge Transport, and Low‐Dissipation Flow , 2015 .

[229]  Bing-Joe Hwang,et al.  An ultrafast rechargeable aluminium-ion battery , 2015, Nature.

[230]  Nicholas S. Hudak,et al.  Application of Redox Non‐Innocent Ligands to Non‐Aqueous Flow Battery Electrolytes , 2014 .

[231]  Gaoping Cao,et al.  Study on a single flow acid Cd–chloranil battery , 2009 .

[232]  Simon F. Schuster,et al.  Lithium-ion cell-to-cell variation during battery electric vehicle operation , 2015 .

[233]  C. Wen,et al.  A review of high energy density lithium–air battery technology , 2013, Journal of Applied Electrochemistry.

[234]  A. Heeger,et al.  A Stable Polyaniline‐Benzoquinone‐Hydroquinone Supercapacitor , 2014, Advanced materials.

[235]  Arumugam Manthiram,et al.  A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries , 2014 .

[236]  Y. Yue,et al.  Li3V2(PO4)3/LiFePO4 composite hollow microspheres for wide voltage lithium ion batteries , 2016 .

[237]  Frank C. Walsh,et al.  A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II). Part IX: Electrode and electrolyte conditioning with hydrogen peroxide , 2010 .

[238]  Guangyuan Zheng,et al.  A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage , 2013 .

[239]  Joaquín Rodríguez-López,et al.  Redox Active Polymers as Soluble Nanomaterials for Energy Storage. , 2016, Accounts of chemical research.

[240]  M. Perry,et al.  Advanced Redox-Flow Batteries: A Perspective , 2016 .

[241]  N. V. Rees Electrochemical insight from nanoparticle collisions with electrodes: A mini-review , 2014 .

[242]  Simon V. Erhard,et al.  A New Method to Model the Thickness Change of a Commercial Pouch Cell during Discharge , 2016 .

[243]  G. Soloveichik Flow Batteries: Current Status and Trends. , 2015, Chemical reviews.

[244]  D. Scherson,et al.  Electrochemical and in situ optical characterization of single micrometer-size particles of spherical nickel oxide in alkaline aqueous electrolytes , 2003 .

[245]  S. Armes,et al.  Aqueous dispersions of electrically conducting monodisperse polypyrrole particles , 1987 .

[246]  M. Winter,et al.  Percolating networks of TiO2 nanorods and carbon for high power lithium insertion electrodes , 2012 .

[247]  Jay Lee,et al.  Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility , 2014 .

[248]  Maria Skyllas-Kazacos,et al.  Characteristics of a new all-vanadium redox flow battery , 1988 .

[249]  Gary M. Koenig,et al.  A carbon-free lithium-ion solid dispersion redox couple with low viscosity for redox flow batteries , 2016 .

[250]  Volker Presser,et al.  Review on the science and technology of water desalination by capacitive deionization , 2013 .

[251]  A. Hayashi,et al.  Raman imaging for LiCoO 2 composite positive electrodes in all-solid-state lithium batteries using Li 2 S-P 2 S 5 solid electrolytes , 2016 .

[252]  Peng Liu,et al.  Study on the stability of the LiFePO4 Li-ion battery via an electrochemical method , 2014 .

[253]  U. Schubert,et al.  Aqueous 2,2,6,6-Tetramethylpiperidine-N-oxyl Catholytes for a High-Capacity and High Current Density Oxygen-Insensitive Hybrid-Flow Battery , 2017 .

[254]  Wenjing Feng,et al.  Facile synthesis of vanadium oxide microspheres for lithium-ion battery cathodes , 2016 .

[255]  Anthony Jarrett,et al.  Design optimization of electric vehicle battery cooling plates for thermal performance , 2011 .

[256]  B. Lucht,et al.  Electrolyte Reactions with the Surface of High Voltage LiNi0.5Mn1.5O4 Cathodes for Lithium-Ion Batteries , 2010 .

[257]  Y. Chiang,et al.  Electronic Conductivity in the Li4/3Ti5/3O4–Li7/3Ti5/3O4 System and Variation with State‐of‐Charge as a Li Battery Anode , 2013 .

[258]  Nathaniel C. Hoyt,et al.  Slurry electrodes for iron plating in an all-iron flow battery , 2015 .

[259]  M. Youssry,et al.  Non-aqueous carbon black suspensions for lithium-based redox flow batteries: rheology and simultaneous rheo-electrical behavior. , 2013, Physical chemistry chemical physics : PCCP.

[260]  G. Rao,et al.  High-performance LiCoO2 by molten salt (LiNO3:LiCl) synthesis for Li-ion batteries , 2005 .

[261]  V. Presser,et al.  Use of Surfactants for Continuous Operation of Aqueous Electrochemical Flow Capacitors , 2016 .

[262]  Guoming Weng,et al.  Unlocking the capacity of iodide for high-energy-density zinc/polyiodide and lithium/polyiodide redox flow batteries , 2017 .

[263]  Gary M. Koenig,et al.  Tuning solution chemistry for morphology control of lithium-ion battery precursor particles , 2015 .

[264]  Linda F. Nazar,et al.  Surface‐Initiated Growth of Thin Oxide Coatings for Li–Sulfur Battery Cathodes , 2012 .

[265]  Ann Marie Sastry,et al.  A review of conduction phenomena in Li-ion batteries , 2010 .

[266]  Maria Skyllas-Kazacos,et al.  Investigation of the effect of shunt current on battery efficiency and stack temperature in vanadium redox flow battery , 2013 .

[267]  Lingjun Li,et al.  Polyacene coated carbon/LiFePO4 cathode for Li ion batteries: Understanding the stabilized double coating structure and enhanced lithium ion diffusion kinetics , 2013 .

[268]  Y. Gogotsi,et al.  Activated Carbon Spheres as a Flowable Electrode in Electrochemical Flow Capacitors , 2014 .

[269]  Morgan J. Anderson,et al.  Correlated electrochemical and optical tracking of discrete collision events. , 2013, Journal of the American Chemical Society.

[270]  Shumei Dou Review and prospects of Mn-based spinel compounds as cathode materials for lithium-ion batteries , 2015, Ionics.

[271]  Performance and Degradation of A Lithium-Bromine Rechargeable Fuel Cell Using Highly Concentrated Catholytes , 2016, 1603.07275.

[272]  Piergiorgio Alotto,et al.  Redox flow batteries for the storage of renewable energy: A review , 2014 .

[273]  Derek Pletcher,et al.  A novel flow battery—A lead acid battery based on an electrolyte with soluble lead(II). III. The influence of conditions on battery performance , 2005 .

[274]  M. Grant,et al.  Effect of chromium and cobalt ions on primary human lymphocytes in vitro , 2011, Journal of immunotoxicology.

[275]  Tuti Mariana Lim,et al.  Li3V2(PO4)3 cathode materials for lithium-ion batteries: A review , 2014 .

[276]  W. Schuhmann,et al.  Combined AFM/SECM Investigation of the Solid Electrolyte Interphase in Li‐Ion Batteries , 2015 .

[277]  M. Yoshio,et al.  Lithium-ion batteries , 2009 .

[278]  Yun-Sung Lee,et al.  Insertion-type electrodes for nonaqueous Li-ion capacitors. , 2014, Chemical reviews.

[279]  W. Jaegermann,et al.  Nonrigid Band Behavior of the Electronic Structure of LiCoO2 Thin Film during Electrochemical Li Deintercalation , 2014 .

[280]  G. Suresh,et al.  Electrochemical Characterization of LiTi2(PO4)3 as Anode Material for Aqueous Rechargeable Lithium Batteries , 2012 .

[281]  M. Morcrette,et al.  Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry , 2012 .

[282]  Faizur Rahman,et al.  Vanadium redox battery: Positive half-cell electrolyte studies , 2009 .

[283]  J. Lee,et al.  The Application of Redox Targeting Principles to the Design of Rechargeable Li–S Flow Batteries , 2015 .

[284]  Wenbin Zheng,et al.  Novel nanosized adsorbing sulfur composite cathode materials for the advanced secondary lithium batteries , 2006 .

[285]  J. Molenda,et al.  Transport properties of LiMn2O4 , 1999 .

[286]  Yefeng Yang,et al.  Recent progress of TiO 2 -based anodes for Li ion batteries , 2016 .

[287]  T. L. Liu,et al.  Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage. , 2017, Journal of the American Chemical Society.

[288]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[289]  John B. Goodenough,et al.  Rechargeable alkali-ion cathode-flow battery , 2011 .

[290]  M. Doeff,et al.  Elucidation of the surface characteristics and electrochemistry of high-performance LiNiO2. , 2016, Chemical communications.

[291]  M. Mench,et al.  Redox flow batteries: a review , 2011 .

[292]  U. Schubert,et al.  An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials , 2015, Nature.

[293]  Eva Magdalena,et al.  Description and performance of a novel aqueous all-copper redox flow battery , 2014 .

[294]  Rui Zhang,et al.  A Review of Solid Electrolyte Interphases on Lithium Metal Anode , 2015, Advanced science.

[295]  R. Savinell,et al.  Mathematical Modeling of Electrochemical Flow Capacitors , 2015 .

[296]  Corinna Wu Better batteries for electric vehicles , 2010 .

[297]  G. Suppes,et al.  Convection battery—modeling, insight, and review , 2013 .

[298]  Morgan J. Anderson,et al.  Single nanoparticle collisions at microfluidic microband electrodes: the effect of electrode material and mass transfer. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[299]  A. Manthiram,et al.  Influence of Cation Ordering and Lattice Distortion on the Charge-Discharge Behavior of LiMn1.5Ni0.5O4 Spinel between 5.0 and 2.0 V , 2012 .

[300]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[301]  Qing Wang,et al.  Next‐Generation, High‐Energy‐Density Redox Flow Batteries , 2015 .

[302]  R. Compton,et al.  Electrochemical sizing of organic nanoparticles. , 2013, Angewandte Chemie.

[303]  L. Nazar,et al.  Radical or Not Radical: Revisiting Lithium–Sulfur Electrochemistry in Nonaqueous Electrolytes , 2015 .

[304]  Harry D Pratt,et al.  Synthesis and characterization of ionic liquids containing copper, manganese, or zinc coordination cations. , 2011, Dalton transactions.

[305]  D. Cahill,et al.  Nanofluids for thermal transport , 2005 .

[306]  B. Grgur,et al.  Novel electrolyte for zinc-polyaniline batteries , 2006 .

[307]  Yongfu Zhao,et al.  A single flow zinc//polyaniline suspension rechargeable battery , 2013 .

[308]  D. Wood,et al.  Cathode materials review , 2014 .

[309]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[310]  Jun Liu,et al.  Towards High‐Performance Nonaqueous Redox Flow Electrolyte Via Ionic Modification of Active Species , 2015 .

[311]  Tiffany L. Kinnibrugh,et al.  Transport, phase reactions, and hysteresis of iron fluoride and oxyfluoride conversion electrode materials for lithium batteries. , 2014, ACS applied materials & interfaces.

[312]  S. Armes,et al.  Synthesis of novel polyaniline colloids using chemically grafted poly(N-vinylpyrrolidone)-based stabilizers , 1992 .

[313]  J. Barker,et al.  An electrochemical investigation into the lithium insertion properties of LixCoO2 , 1996 .

[314]  Karim Zaghib,et al.  Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries , 1999 .

[315]  D. Bresser,et al.  Unfolding the Mechanism of Sodium Insertion in Anatase TiO2 Nanoparticles , 2015 .

[316]  Yang Xia,et al.  An asymmetric Zn//Ag doped polyaniline microparticle suspension flow battery with high discharge capacity , 2015 .

[317]  T. Gutel,et al.  Monothioanthraquinone as an organic active material for greener lithium batteries , 2014 .

[318]  Yongku Kang,et al.  Structural and electrochemical characteristics of morphology-controlled Li[Ni0.5Mn1.5]O4 cathodes , 2015 .

[319]  S. Trussler,et al.  A Guide to Li-Ion Coin-Cell Electrode Making for Academic Researchers , 2011 .

[320]  M. Alpuche‐Aviles,et al.  Observation of individual semiconducting nanoparticle collisions by stochastic photoelectrochemical currents. , 2013, Journal of the American Chemical Society.

[321]  Yang Yong,et al.  Electrochemical performance and capacity fading reason of LiMn2O4/graphite batteries stored at room temperature , 2009 .

[322]  N. Kosova,et al.  Approaching better cycleability of LiCoPO4 by vanadium modification , 2016 .

[323]  S. Armes,et al.  Aqueous colloidal dispersions of polyaniline formed by using poly(vinylpyridine)-based steric stabilizers , 1990 .

[324]  Anming Hu,et al.  Si-Based Anode Materials for Li-Ion Batteries: A Mini Review , 2014, Nano-Micro Letters.

[325]  Song Jin,et al.  Nanostructured silicon for high capacity lithium battery anodes , 2011 .

[326]  Greg F. Naterer,et al.  Heat transfer in phase change materials for thermal management of electric vehicle battery modules , 2010 .

[327]  Dennis W. Dees,et al.  Electrochemical Modeling of Lithium-Ion Positive Electrodes during Hybrid Pulse Power Characterization Tests , 2006 .

[328]  M. Can,et al.  Improving the cycle stability of LiCoPO4 nanocomposites as 4.8 V cathode: Stepwise or synchronous surface coating and Mn substitution , 2016 .

[329]  Zhengrui Xu,et al.  Review—Recent Developments in the Doped LiFePO4 Cathode Materials for Power Lithium Ion Batteries , 2016 .

[330]  Qing Wang,et al.  High–energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane , 2015, Science Advances.

[331]  Yanzhi Sun,et al.  Study on a new single flow acid Cu–PbO2 battery , 2008 .

[332]  F. Kang,et al.  Secondary batteries with multivalent ions for energy storage , 2015, Scientific Reports.

[333]  Huamin Zhang,et al.  A high-energy-density redox flow battery based on zinc/polyhalide chemistry. , 2012, ChemSusChem.

[334]  J. Bao,et al.  The Mechanism and Modelling of Shunt Current in the Vanadium Redox Flow Battery , 2016 .