Analysis of a finite-buffer bulk-service queue under Markovian arrival process with batch-size-dependent service

We consider a finite capacity single server queue in which the customers arrive according to a Markovian arrival process. The customers are served in batches following a 'general bulk service rule'. The service times, which depend on the size of the batch, are generally distributed. We obtain, in steady-state, the joint distribution of the random variables of interest at various epochs. Efficient computational procedures in the case of phase type services are presented. An illustrative numerical example to bring out the qualitative nature of the model is presented.

[1]  U. C. Gupta,et al.  BMAP/G/1/N queue with vacations and limited service discipline , 2006, Appl. Math. Comput..

[2]  Wolfgang Stadje,et al.  Applications of bulk queues to group testing models with incomplete identification , 2007, Eur. J. Oper. Res..

[3]  M. Neuts,et al.  A single-server queue with server vacations and a class of non-renewal arrival processes , 1990, Advances in Applied Probability.

[4]  K. Sikdar,et al.  Analysis of the MAP/G(a,b)/1/N queue with multiple vacations , 2008 .

[5]  Attahiru Sule Alfa,et al.  A multiserver queue with markovian arrivals and group services with thresholds , 1993 .

[6]  M. L. Chaudhry,et al.  A first course in bulk queues , 1983 .

[7]  Antonio Gómez-Corral,et al.  Markovian arrivals in stochastic modelling: a survey and some new results , 2010 .

[8]  Mohan L. Chaudhry,et al.  Modelling and analysis of M/Ga,b/1/N queue – A simple alternative approach , 1999, Queueing Syst. Theory Appl..

[9]  M. L. Chaudhry,et al.  Analysis of a finite‐buffer bulk‐service queue with discrete‐Markovian arrival process: D‐MAP/Ga,b/1/N , 2003 .

[10]  Abhijit Datta Banik Queueing analysis and optimal control of BMAP/G(a, b)/1/N and BMAP/MSP(a, b)/1/N systems , 2009, Comput. Ind. Eng..

[11]  Nicky D. van Foreest,et al.  Analysis of finite-buffer state-dependent bulk queues , 2013, OR Spectr..

[12]  Mohan L. Chaudhry,et al.  A Simple and Extended Computational Analysis of M/Gj(a,b)/1 and M/Gj(a,b)/1/(B + b) Queues Using Roots , 2012, INFOR Inf. Syst. Oper. Res..

[13]  Mohan L. Chaudhry,et al.  Finite-Buffer Bulk Service Queue Under Markovian Service Process: GI/MSP (a,b)/1/N , 2009 .

[14]  Srinivas R. Chakravarthy,et al.  Markovian Arrival Processes , 2010 .

[15]  M. Neuts A General Class of Bulk Queues with Poisson Input , 1967 .

[16]  Veena Goswami,et al.  Discrete-time bulk-service queues with accessible and non-accessible batches , 2006, Appl. Math. Comput..

[17]  Srinivas R. Chakravarthy The Batch Markovian Arrival Process: A Review and Future Work , 2001 .

[18]  David M. Lucantoni,et al.  New results for the single server queue with a batch Markovian arrival process , 1991 .

[19]  U. C. Gupta,et al.  Reducing congestion in bulk-service finite-buffer queueing system using batch-size-dependent service , 2012, Perform. Evaluation.

[20]  U. C. Gupta,et al.  Computing queue length distributions in MAP/G/1/N queue under single and multiple vacation , 2006, Appl. Math. Comput..

[21]  Yutaka Baba A BULK SERVICE GI/M/1 QUEUE WITH SERVICE RATES DEPENDING ON SERVICE BATCH SIZE , 1996 .

[22]  M. F. Neuts,et al.  Transform-free equations for the stationary waiting time distributions in the queue with poisson arrivals and bulk services , 1987 .

[23]  Herwig Bruneel,et al.  A queueing model for general group screening policies and dynamic item arrivals , 2010, Eur. J. Oper. Res..

[24]  U. C. Gupta,et al.  Analytic and numerical aspects of batch service queues with single vacation , 2005, Comput. Oper. Res..

[25]  Lan Bin,et al.  A Finite Capacity Queue with Nonrenewal Input and Exponential Dynamic Group Services , 1997, INFORMS J. Comput..

[26]  U. C. Gupta,et al.  The queue length distributions in the finite buffer bulk-service MAP/G/1 queue with multiple vacations , 2005 .

[27]  Mohan L. Chaudhry,et al.  On the Finite Buffer Queue with Renewal Input and Batch Markovian Service Process: GI/BMSP/1/N , 2008 .

[28]  Phuoc Tran-Gia,et al.  Performance analysis of a batch service queue arising out of manufacturing system modelling , 1993, Queueing Syst. Theory Appl..

[29]  Mohan L. Chaudhry,et al.  Finite-buffer bulk service queue under Markovian service process , 2007, Valuetools 2007.

[30]  Florin Avram,et al.  On bulk-service MAP/PHL,N/1/N G-Queues with repeated attempts , 2006, Ann. Oper. Res..

[31]  S. Chakravarthy Analysis of a finite MAP/G/1 queue with group services , 1993, Queueing Syst. Theory Appl..

[32]  Herwig Bruneel,et al.  Analysis of threshold-based batch-service queueing systems with batch arrivals and general service times , 2011, Perform. Evaluation.

[33]  Alexander Dukhovny,et al.  Optimization in HIV screening problems , 2003 .

[34]  Catherine Rosenberg,et al.  Arrival and departure state distributions in the general bulk‐service queue , 1999 .

[35]  Herwig Bruneel,et al.  Tail probabilities of the delay in a batch-service queueing model with batch-size dependent service times and a timer mechanism , 2013, Comput. Oper. Res..

[36]  R.a Arumuganathan,et al.  Steady state analysis of a bulk queue with multiple vacations, setup times with N-policy and closedown times , 2005 .

[37]  Warren B. Powell,et al.  The Bulk Service Queue with a General Control Strategy: Theoretical Analysis and a New Computational Procedure , 1986, Oper. Res..

[38]  Herwig Bruneel,et al.  Analysis of a versatile batch-service queueing model with correlation in the arrival process , 2013, Perform. Evaluation.

[39]  Marcel Neuts,et al.  An Algorithm for the P(n,t) Matrices of a Continuous BMAP , 1996 .

[40]  U. C. Gupta,et al.  Analysis of the MAP/Ga,b/1/N Queue , 2001, Queueing Syst. Theory Appl..

[41]  Ijbf Ivo Adan,et al.  Multi‐server Batch‐service Systems , 2000 .

[42]  Srinivas R. Chakravarthy,et al.  A discrete single server queue with Markovian arrivals and phase type group services , 1995 .

[43]  Richard M. Feldman,et al.  An M/M/1 queue with a general bulk service rule , 1985 .

[44]  Srinivas R. Chakravarthy,et al.  A finite capacity queue with Markovian arrivals and two servers with group services , 1994 .

[45]  Herwig Bruneel,et al.  Tail distribution of the delay in a general batch-service queueing model , 2012, Computers & Operations Research.