Distributed multi-camera visual mapping using topological maps of planar regions

This paper presents a multi-agent solution for cooperative visual mapping using planar regions. Each agent is assumed to be equipped with a conventional camera and has limited communication capabilities. Our approach starts building topological maps from independent image sequences where natural landmarks extracted from conventional images are grouped to create a graph of planes. With this approach the features observed in several images belonging to the same planar region are stored only once, reducing the size of the individual maps. In a distributed scenario this is very important because smaller maps can be transmitted faster, which makes our approach better suited for cooperative mapping. The later fusion of the individual maps is obtained via distributed consensus without any initial information about the relations between the different maps. Experiments with real images in complex scenarios show the good performance of our proposal.

[1]  Ana Cristina Murillo,et al.  From lines to epipoles through planes in two views , 2006, Pattern Recognit..

[2]  N. H. C. Yung,et al.  Scene categorization via contextual visual words , 2010, Pattern Recognit..

[3]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[4]  Carlos Sagüés,et al.  Topological maps based on graphs of planar regions , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  Seif Haridi,et al.  Distributed Algorithms , 1992, Lecture Notes in Computer Science.

[6]  Konrad Schindler,et al.  Piecewise planar scene reconstruction from sparse correspondences , 2006, Image Vis. Comput..

[7]  Francesco Bullo,et al.  Distributed Control of Robotic Networks , 2009 .

[8]  Ben J. A. Kröse,et al.  From images to rooms , 2007, Robotics Auton. Syst..

[9]  Michel Dhome,et al.  Monocular Vision for Mobile Robot Localization and Autonomous Navigation , 2007, International Journal of Computer Vision.

[10]  Luc Van Gool,et al.  From omnidirectional images to hierarchical localization , 2007, Robotics Auton. Syst..

[11]  Philippe Martinet,et al.  Indoor navigation of a non-holonomic mobile robot using a visual memory , 2008, Auton. Robots.

[12]  Jean-Arcady Meyer,et al.  Fast and Incremental Method for Loop-Closure Detection Using Bags of Visual Words , 2008, IEEE Transactions on Robotics.

[13]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[14]  Tom Drummond,et al.  Scalable Monocular SLAM , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[15]  Jean-Marie Becker,et al.  Plane-based camera self-calibration by metric rectification of images , 2008, Image Vis. Comput..

[16]  Jiebo Luo,et al.  Learning multi-label scene classification , 2004, Pattern Recognit..

[17]  Teresa A. Vidal-Calleja,et al.  Fusing Monocular Information in Multicamera SLAM , 2008, IEEE Transactions on Robotics.

[18]  Karim Achour,et al.  A new approach to 3D reconstruction without camera calibration , 2001, Pattern Recognit..

[19]  Carlos Sagüés,et al.  Consistent data association in multi-robot systems with limited communications , 2010, Robotics: Science and Systems.

[20]  Jorge Cortes,et al.  Distributed Map Merging in a Robotic Network , 2008 .

[21]  Patrick Rives,et al.  Real-time Robust Detection of Planar Regions in a Pair of Images , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[22]  Luc Van Gool,et al.  Wide-baseline multiple-view correspondences , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[23]  Friedrich Fraundorfer,et al.  Topological mapping, localization and navigation using image collections , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[24]  B. Kuipers Modelling spatial knowledge , 1977, IJCAI 1977.

[25]  Miguel A. Patricio,et al.  Robust data fusion in a visual sensor multi-agent architecture , 2007, 2007 10th International Conference on Information Fusion.

[26]  Lihi Zelnik-Manor,et al.  Multiview Constraints on Homographies , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  M.S. de Queiroz,et al.  Homography-based visual servoing of wheeled mobile robots , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[28]  François Chaumette,et al.  Image-based robot navigation from an image memory , 2007, Robotics Auton. Syst..

[29]  Benjamin Kuipers,et al.  Modeling Spatial Knowledge , 1978, IJCAI.

[30]  Nicholas R. Gans,et al.  Homography-Based Control Scheme for Mobile Robots With Nonholonomic and Field-of-View Constraints , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[31]  Javier Civera,et al.  Inverse Depth Parametrization for Monocular SLAM , 2008, IEEE Transactions on Robotics.

[32]  Richard Szeliski,et al.  Geometrically Constrained Structure from Motion: Points on Planes , 1998, SMILE.

[33]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[34]  Warren E. Dixon,et al.  Homography-based visual servo tracking control of a wheeled mobile robot , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[35]  Vincent Lepetit,et al.  View-based Maps , 2010, Int. J. Robotics Res..

[36]  Jorge Cortes,et al.  Distributed Control of Robotic Networks: A Mathematical Approach to Motion Coordination Algorithms , 2009 .

[37]  Arturo Gil,et al.  Multi-robot visual SLAM using a Rao-Blackwellized particle filter , 2010, Robotics Auton. Syst..

[38]  Jian Yao,et al.  Robust multi-view feature matching from multiple unordered views , 2007, Pattern Recognit..

[39]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .