Carbon catabolite repression in Aspergillos nidulans.

Mutations leading to relief of carbon catabolite repression of the syntheses of a number of enzymes in Aspergillus nidulans can be selected in several different ways. They map at the cre A locus in linkage group I and are recessive. Their phenotype is not due to defective carbon source uptake.

[1]  L. Sankaran,et al.  Differential inhibition of catabolite-sensitive enzyme induction by intercalating dyes. , 1973, Nature: New biology.

[2]  O. Hankinson Mutants of the Pentose Phosphate Pathway in Aspergillus nidulans , 1974, Journal of bacteriology.

[3]  C. Roberts Enzyme lesions in galactose non-utilising mutants of Aspergillus nidulans. , 1970, Biochimica et Biophysica Acta.

[4]  C. Roberts The genetic analysis of carbohydrate utilization in Aspergillus nidulans. , 1963, Journal of general microbiology.

[5]  F. D. DRAKE,et al.  Interstellar Radio Communication and the Frequency Selection Problem , 1973, Nature.

[6]  M. Hynes Induction and Repression of Amidase Enzymes in Aspergillus nidulans , 1970, Journal of bacteriology.

[7]  J. Lampen,et al.  Saccharomyces Mutants with Invertase Formation Resistant to Repression by Hexoses , 1973, Journal of bacteriology.

[8]  J. Kinghorn,et al.  NAD and NADP l-glutamate dehydrogenase activity and ammonium regulation in Aspergillus nidulans. , 1973, Journal of general microbiology.

[9]  D. Cove,et al.  Alcohol and amine catabolism in fungus Aspergillus nidulans. , 1972, The Biochemical journal.

[10]  B. K. Ghosh,et al.  Abnormal Cell Envelope Ultrastructure of a Saccharomyces Mutant with Invertase Formation Resistant to Hexoses , 1973, Journal of bacteriology.

[11]  Ennis Layne,et al.  SPECTROPHOTOMETRIC AND TURBIDIMETRIC METHODS FOR MEASURING PROTEINS , 1957 .

[12]  H. Kornberg,et al.  Regulation of sugar uptake by Aspergillus nidulans , 1969, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[13]  S. Armitt,et al.  Mutants ofAspergillus nidulans lacking pyruvate carboxylase , 1972, FEBS letters.

[14]  J. Beckwith,et al.  Genetic Characterization of Mutations Which Affect Catabolite-Sensitive Operons in Escherichia coli, Including Deletions of the Gene for Adenyl Cyclase , 1973, Journal of bacteriology.

[15]  M. Hynes Mutants with Altered Glucose Repression of Amidase Enzymes in Aspergillus nidulans , 1972, Journal of bacteriology.

[16]  D. Cove The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. , 1966, Biochimica et biophysica acta.

[17]  C. Scazzocchio,et al.  Use of Analogues and the Substrate-Sensitivity of Mutants in Analysis of Purine Uptake and Breakdown in Aspergillus nidulans , 1967, Journal of bacteriology.

[18]  M. Buettner,et al.  Cyclic Adenosine 3′,5′-Monophosphate in Escherichia coli , 1973, Journal of bacteriology.

[19]  K. Mccully,et al.  The use of p-fluorophenylalanine with 'master strains' of Aspergillus nidulans for assigning genes to linkage groups. , 1965, Genetical research.

[20]  S. Mitsuhashi,et al.  Aromatic biosynthesis. XIII. Conversion of quinic acid to 5-dehydroquinic acid by quinic dehydrogenase. , 1954, Biochimica et biophysica acta.

[21]  M. Mandel,et al.  Optimal conditions for mutagenesis by N-methyl-N′-nitro-N-nitrosoguanidine in escherichia coli K12☆ , 1965 .

[22]  H. Kornberg,et al.  Regulation of sugar utilization by Aspergillus nidulans. , 1968, Biochimica et biophysica acta.

[23]  K. Wallenfels [23] β-Galactosidase (crystalline) , 1962 .

[24]  M. Hynes,et al.  The genetic analysis of regulation of amidase synthesis in Aspergillus nidulans. I. Mutants able to utilize acrylamide. , 1970, Molecular & general genetics : MGG.