Functions as Processes: Termination and the lm[(m)\tilde]\lambda\mu\widetilde{\mu}-Calculus

The \(\lambda\mu\widetilde{\mu}\)-calculus is a variant of the λ-calculus with significant differences, including non-confluence and a Curry-Howard isomorphism with the classical sequent calculus.

[1]  Robin Milner Functions as Processes , 1990, ICALP.

[2]  Davide Sangiorgi Internal Mobility and Agent-Passing Calculi , 1995, ICALP.

[3]  Davide Sangiorgi,et al.  From λ to π; or, Rediscovering continuations , 1999, Mathematical Structures in Computer Science.

[4]  Nobuko Yoshida,et al.  Strong normalisation in the pi -calculus , 2004, Inf. Comput..

[5]  Frank Pfenning,et al.  Logic Programming and Automated Reasoning , 1994, Lecture Notes in Computer Science.

[6]  Mario Tokoro,et al.  An Object Calculus for Asynchronous Communication , 1991, ECOOP.

[7]  Gérard Boudol,et al.  Asynchrony and the Pi-calculus , 1992 .

[8]  Davide Sangiorgi,et al.  Termination of processes , 2006, Mathematical Structures in Computer Science.

[9]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[10]  J. Girard,et al.  Proofs and types , 1989 .

[11]  Pierre America,et al.  ECOOP'91 European Conference on Object-Oriented Programming , 1991, Lecture Notes in Computer Science.

[12]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[13]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[14]  Vasco Thudichum Vasconcelos Lambda and pi calculi, CAM and SECD machines , 2005, J. Funct. Program..

[15]  Davide Sangiorgi,et al.  Ensuring termination by typability , 2006, Inf. Comput..

[16]  Davide Sangiorgi,et al.  The Pi-Calculus - a theory of mobile processes , 2001 .

[17]  Alex K. Simpson,et al.  Computational Adequacy in an Elementary Topos , 1998, CSL.

[18]  Michel Parigot,et al.  Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural Deduction , 1992, LPAR.

[19]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[20]  Nobuko Yoshida,et al.  Strong normalisation in the /spl pi/-calculus , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[21]  Davide Sangiorgi,et al.  Mobile Processes and Termination , 2009, Semantics and Algebraic Specification.

[22]  Luca Cardelli,et al.  L O ] 22 S ep 2 01 1 From X to π Representing the Classical Sequent Calculus in the π-calculus Extended , 2011 .

[23]  Hugo Herbelin,et al.  The duality of computation , 2000, ICFP '00.

[24]  Jens Palsberg,et al.  Semantics and Algebraic Specification, Essays Dedicated to Peter D. Mosses on the Occasion of His 60th Birthday , 2009, Semantics and Algebraic Specification.

[25]  Hugo Herbelin,et al.  A Lambda-Calculus Structure Isomorphic to Gentzen-Style Sequent Calculus Structure , 1994, CSL.