Plasmonic nanostructures: artificial molecules.

This Account describes a new paradigm for the relationship between the geometry of metallic nanostructures and their optical properties. While the interaction of light with metallic nanoparticles is determined by their collective electronic or plasmon response, a compelling analogy exists between plasmon resonances of metallic nanoparticles and wave functions of simple atoms and molecules. Based on this insight, an entire family of plasmonic nanostructures, artificial molecules, has been developed whose optical properties can be understood within this picture: nanoparticles (nanoshells, nanoeggs, nanomatryushkas, nanorice), multi-nanoparticle assemblies (dimers, trimers, quadrumers), and a nanoparticle-over-metallic film, an electromagnetic analog of the spinless Anderson model.

[1]  Fei Le,et al.  Nanorice: a hybrid plasmonic nanostructure. , 2006, Nano letters.

[2]  Peter Nordlander,et al.  Plasmon modes of nanosphere trimers and quadrumers. , 2006, The journal of physical chemistry. B.

[3]  Philip W. Anderson,et al.  Localized Magnetic States in Metals , 1961 .

[4]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[5]  Naomi J. Halas,et al.  Nanoengineering of optical resonances , 1998 .

[6]  Emil Prodan,et al.  Structural Tunability of the Plasmon Resonances in Metallic Nanoshells , 2003 .

[7]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticles near Metallic Surfaces , 2004 .

[8]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[9]  P. Nordlander,et al.  Plasmon hybridization in nanoshell dimers. , 2005, The Journal of chemical physics.

[10]  Dennis G. Hall,et al.  Enhanced Dipole-Dipole Interaction between Elementary Radiators Near a Surface , 1998 .

[11]  Ichirou Yamaguchi,et al.  Optical Absorption Study of the Surface Plasmon Resonance in Gold Nanoparticles Immobilized onto a Gold Substrate by Self-Assembly Technique , 2003 .

[12]  U. Fano Effects of Configuration Interaction on Intensities and Phase Shifts , 1961 .

[13]  S. L. Westcott,et al.  Light Interaction between Gold Nanoshells Plasmon Resonance and Planar Optical Waveguides , 2002 .

[14]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticle Dimers , 2004 .

[15]  Naomi J. Halas,et al.  Plasmon Resonance Shifts of Au-Coated Au 2 S Nanoshells: Insight into Multicomponent Nanoparticle Growth , 1997 .

[16]  W. Halperin,et al.  Quantum size effects in metal particles , 1986 .

[17]  Naomi J. Halas,et al.  Plasmonic Properties of Concentric Nanoshells , 2004 .

[18]  K. Whites,et al.  Electrodynamics of spatial clusters of spheres: Substrate effects , 2003 .

[19]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[20]  S. Linden,et al.  Controlling the interaction between light and gold nanoparticles: selective suppression of extinction. , 2001, Physical review letters.

[21]  S. Chakrabarti,et al.  Addition theorems for solid harmonics and the second Born amplitudes , 1995 .

[22]  N J Halas,et al.  Plasmons in the metallic nanoparticle-film system as a tunable impurity problem. , 2005, Nano letters.

[23]  P. K. Aravind,et al.  The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure; applications to surface enhanced spectroscopy , 1983 .

[24]  Emil Prodan,et al.  Electronic Structure and Optical Properties of Gold Nanoshells , 2003 .

[25]  P. Nordlander,et al.  Plasmon hybridization in spherical nanoparticles. , 2004, The Journal of chemical physics.

[26]  Zhou,et al.  Controlled synthesis and quantum-size effect in gold-coated nanoparticles. , 1994, Physical review. B, Condensed matter.

[27]  M. El-Sayed,et al.  Some interesting properties of metals confined in time and nanometer space of different shapes. , 2001, Accounts of chemical research.

[28]  Lechner,et al.  Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance , 2000, Physical review letters.

[29]  Louis E. Brus,et al.  Semiconductor crystallites: a class of large molecules , 1990 .

[30]  Younan Xia,et al.  Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. , 2002, Analytical chemistry.

[31]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[32]  Mark I. Stockman,et al.  Dipolar emitters at nanoscale proximity of metal surfaces: Giant enhancement of relaxation in microscopic theory , 2004 .

[33]  U. Kreibig,et al.  Substrate effect on the optical response of silver nanoparticles , 2004 .

[34]  P. Nordlander,et al.  Effects of dielectric screening on the optical properties of metallic nanoshells , 2003 .

[35]  Emil Prodan,et al.  Electronic structure and polarizability of metallic nanoshells , 2002 .