A General Algorithm for Reusing Krylov Subspace Information. I. Unsteady Navier-Stokes
暂无分享,去创建一个
Cornelis Vuik | Hester Bijl | Martin B. van Gijzen | Mark H. Carpenter | M. Gijzen | C. Vuik | M. Carpenter | H. Bijl | P. Lucas | Peter Lucas
[1] Misha Elena Kilmer,et al. Recycling Subspace Information for Diffuse Optical Tomography , 2005, SIAM J. Sci. Comput..
[2] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[3] Christian Rey,et al. Iterative accelerating algorithms with Krylov subspaces for the solution to large-scale nonlinear problems , 2004, Numerical Algorithms.
[4] Cornelis Vuik,et al. Coarse grid acceleration of a parallel block preconditioner , 2001, Future Gener. Comput. Syst..
[5] Gene H. Golub,et al. A Hybrid Approach Combining Chebyshev Filter and Conjugate Gradient for Solving Linear Systems with Multiple Right-Hand Sides , 2007, SIAM J. Matrix Anal. Appl..
[6] Cornelis Vuik,et al. Parallelism in ILU-preconditioned GMRES , 1998, Parallel Comput..
[7] R. Morgan. Restarted block-GMRES with deflation of eigenvalues , 2005 .
[8] Ronald B. Morgan,et al. A Restarted GMRES Method Augmented with Eigenvectors , 1995, SIAM J. Matrix Anal. Appl..
[9] Yousef Saad,et al. Hybrid Krylov Methods for Nonlinear Systems of Equations , 1990, SIAM J. Sci. Comput..
[10] P. Spalart. A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .
[11] Kesheng Wu,et al. Thick-Restart Lanczos Method for Large Symmetric Eigenvalue Problems , 2000, SIAM J. Matrix Anal. Appl..
[12] Cornelis Vuik,et al. GMRESR: a family of nested GMRES methods , 1994, Numer. Linear Algebra Appl..
[13] David E. Keyes,et al. Nonlinearly Preconditioned Inexact Newton Algorithms , 2002, SIAM J. Sci. Comput..
[14] A. Segal,et al. A comparison of various deflation vectors applied to elliptic problems with discontinuous coefficients , 2002 .
[15] Frédéric Guyomarc'h,et al. An Augmented Conjugate Gradient Method for Solving Consecutive Symmetric Positive Definite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..
[16] S. Eisenstat,et al. Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .
[17] Yousef Saad,et al. A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..
[18] J. Meijerink,et al. An Efficient Preconditioned CG Method for the Solution of a Class of Layered Problems with Extreme Contrasts in the Coefficients , 1999 .
[19] Yousef Saad,et al. Deflated and Augmented Krylov Subspace Techniques , 1997, Numer. Linear Algebra Appl..
[20] Cornelis Vuik,et al. The Deflation Accelerated Schwarz Method for CFD , 2005, International Conference on Computational Science.
[21] Paul Fischer,et al. PROJECTION TECHNIQUES FOR ITERATIVE SOLUTION OF Ax = b WITH SUCCESSIVE RIGHT-HAND SIDES , 1993 .
[22] Lois Mansfield. Damped Jacobi Preconditioning and Coarse Grid Deflation for Conjugate Gradient Iteration on Parallel Computers , 1991, SIAM J. Sci. Comput..
[23] Gene H. Golub,et al. Adaptively Preconditioned GMRES Algorithms , 1998, SIAM J. Sci. Comput..
[24] Kevin Burrage,et al. On the performance of various adaptive preconditioned GMRES strategies , 1998, Numer. Linear Algebra Appl..
[25] R. Nicolaides. Deflation of conjugate gradients with applications to boundary value problems , 1987 .
[26] E. Sturler,et al. Truncation Strategies for Optimal Krylov Subspace Methods , 1999 .
[27] Tony F. Chan,et al. Analysis of Projection Methods for Solving Linear Systems with Multiple Right-Hand Sides , 1997, SIAM J. Sci. Comput..
[28] Min Zeng,et al. Harmonic projection methods for large non-symmetric eigenvalue problems , 1998, Numer. Linear Algebra Appl..
[29] Paul F. Fischer,et al. Hybrid Multigrid/Schwarz Algorithms for the Spectral Element Method , 2005, J. Sci. Comput..
[30] K. Burrage,et al. Restarted GMRES preconditioned by deflation , 1996 .
[31] H. V. D. Vorst,et al. An iterative solution method for solving f ( A ) x = b , using Krylov subspace information obtained for the symmetric positive definite matrix A , 1987 .
[32] William Gropp,et al. DOMAIN DECOMPOSITION METHODS IN COMPUTATIONAL FLUID DYNAMICS , 1991 .
[33] M. Benzi. Preconditioning techniques for large linear systems: a survey , 2002 .
[34] Christian Rey,et al. A Rayleigh–Ritz preconditioner for the iterative solution to large scale nonlinear problems , 1998, Numerical Algorithms.
[35] Y. Saad. Analysis of Augmented Krylov Subspace Methods , 1997, SIAM J. Matrix Anal. Appl..
[36] D. Zingg,et al. Fast Newton-Krylov method for unstructured grids , 1998 .
[37] Ronald B. Morgan,et al. Implicitly Restarted GMRES and Arnoldi Methods for Nonsymmetric Systems of Equations , 2000, SIAM J. Matrix Anal. Appl..
[38] Efstratios Gallopoulos,et al. An Iterative Method for Nonsymmetric Systems with Multiple Right-Hand Sides , 1995, SIAM J. Sci. Comput..
[39] J. Meijerink,et al. The construction of projection vectors for a deflated ICCG method applied to problems with extreme contrasts in the coefficients , 2001 .
[40] Danny C. Sorensen,et al. Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..
[41] R. Mittra,et al. A conjugate gradient algorithm for the treatment of multiple incident electromagnetic fields , 1989 .
[42] Ronald B. Morgan,et al. GMRES with Deflated Restarting , 2002, SIAM J. Sci. Comput..
[43] Cornelis Vuik,et al. On the Construction of Deflation-Based Preconditioners , 2001, SIAM J. Sci. Comput..
[44] W. Joubert,et al. Numerical experiments with parallel orderings for ILU preconditioners. , 1999 .
[45] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[46] Hester Bijl,et al. Implicit Time Integration Schemes for the Unsteady Compressible Navier–Stokes Equations: Laminar Flow , 2002 .
[47] S. A. Kharchenko,et al. Eigenvalue translation based preconditioners for the GMRES(k) method , 1995, Numer. Linear Algebra Appl..
[48] Yousef Saad,et al. High-order ILU preconditioners for CFD problems , 2000 .
[49] M. Papadrakakis,et al. A new implementation of the Lanczos method in linear problems , 1990 .
[50] Eric de Sturler,et al. Recycling Krylov Subspaces for Sequences of Linear Systems , 2006, SIAM J. Sci. Comput..
[51] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[52] Youcef Saad,et al. A Basic Tool Kit for Sparse Matrix Computations , 1990 .
[53] Cornelis Vuik,et al. An Efficient Deflation Method applied on 2-D and 3-D Bubbly Flow Problems , 2006 .
[54] L. Dutto. The effect of ordering on preconditioned GMRES algorithm, for solving the compressible Navier-Stokes equations , 1993 .
[55] Gautam M. Shroff,et al. Stabilization of unstable procedures: the recursive projection method , 1993 .
[56] Alan B. Williams,et al. A Deflation Technique for Linear Systems of Equations , 1998, SIAM J. Sci. Comput..
[57] Cornelis Vuik,et al. A Comparison of Deflation and the Balancing Preconditioner , 2005, SIAM J. Sci. Comput..
[58] D. Keyes,et al. Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .
[59] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[60] Yuri V. Vassilevski,et al. Choice of initial guess in iterative solution of series of systems arising in fluid flow simulations , 2006, J. Comput. Phys..
[61] Hester Bijl,et al. Fourth-Order Runge–Kutta Schemes for Fluid Mechanics Applications , 2005, J. Sci. Comput..
[62] G. Golub,et al. Gmres: a Generalized Minimum Residual Algorithm for Solving , 2022 .