Acoustic communication and burrow acoustics are reflected in the ear morphology of the coruro (Spalacopus cyanus, Octodontidae), a social fossorial rodent

We studied the middle and inner ears of seven adult coruros (Spalacopus cyanus), subterranean and social rodents from central Chile, using free‐hand dissection and routine staining techniques. Middle ear parameters that were focused on here (enlarged bullae and eardrums, ossicles of the “freely mobile type”) are believed to enhance hearing sensitivity at lower frequencies. The organ of Corti was of a common mammalian type and revealed three peaks of higher inner hair cell densities. Based on a position frequency map, frequencies were assigned to the respective peaks along the basilar membrane. The first peak at around 300–400 Hz is discussed with respect to the burrow acoustics, while the peak around 10–20 kHz is probably a plesiomorphic feature. The most pronounced peak at around 2 kHz reflects the frequency at which the main energy of vocal communication occurs. The morphology of the ear of the coruro corresponds to the typical pattern seen in subterranean rodents (low frequency and low‐sensitivity hearers), yet, at the same time, it also deviates from it in several functionally relevant features. J. Morphol. © 2006 Wiley‐Liss, Inc.

[1]  D. Lay The anatomy, physiology, functional significance and evolution of specialized hearing organs of gerbilline rodents , 1972, Journal of morphology.

[2]  V. Bruns,et al.  Cochlea in old world mice and rats (Muridae) , 1988, Journal of morphology.

[3]  J. E. Hawkins,et al.  Morphometrics and Functional Morphology of Middle Ears of Extant Pocket Gophers (Rodentia: Geomyidae) , 1999 .

[4]  H. Burda,et al.  Hearing in blind subterranean Zambian mole-rats (Cryptomys sp.): collective behavioural audiogram in a highly social rodent , 1997, Journal of Comparative Physiology A.

[5]  S. Begall,et al.  Spalacopus cyanus (Rodentia: Octodontidae): an extremist in tunnel constructing and food storing among subterranean mammals , 2000 .

[6]  Henry E. Heffner,et al.  Audiogram of the hooded Norway rat , 1994, Hearing Research.

[7]  Manfred Kössl,et al.  The cochlear frequency map of the mustache bat,Pteronotus parnellii , 1985, Journal of Comparative Physiology A.

[8]  Guinea pig cochlear hair cell density; its relation to frequency discrimination , 1984, Hearing Research.

[9]  D. Webster,et al.  Auditory systems of Heteromyidae: Functional morphology and evolution of the middle ear , 1975, Journal of morphology.

[10]  H. Heffner,et al.  Hearing range of the domestic cat , 1985, Hearing Research.

[11]  M. Kössl,et al.  Acoustic distortion products from the cochlea of the blind African mole rat, Cryptomys spec. , 2004, Journal of Comparative Physiology A.

[12]  E. Nevo,et al.  Adaptive optimal sound for vocal communication in tunnels of a subterranean mammal (Spalax ehrenbergi) , 1986, Experientia.

[13]  Henry E. Heffner,et al.  Hearing in large and small dogs: Absolute thresholds and size of the tympanic membrane. , 1983 .

[14]  R. Shepherd,et al.  Chronic electrical stimulation of the auditory nerve in cats. Physiological and histopathological results. , 1983, Acta oto-laryngologica. Supplementum.

[15]  S. Begall,et al.  Reproduction, Postnatal Development, and Growth of Social Coruros, Spalacopus cyanus (Rodentia: Octodontidae), from Chile , 1999 .

[16]  M. D. Beecher Hearing in the owl monkey (Aotus trivirgatus). I. Auditory sensitivity. , 1974, Journal of comparative and physiological psychology.

[17]  V. Bruns,et al.  The ear in subterranean insectivora and rodentia in comparison with ground‐dwelling representatives. I. Sound conducting system of the middle ear , 1992, Journal of morphology.

[18]  J. Saunders,et al.  Middle‐ear development VI: Structural maturation of the rat conducting apparatus , 1994, The Anatomical record.

[19]  John J. Rosowski,et al.  Hearing in Transitional Mammals: Predictions from the Middle-Ear Anatomy and Hearing Capabilities of Extant Mammals , 1992 .

[20]  E. Borg,et al.  Hearing thresholds in the rabbit. A behavioral and electrophysiological study. , 1983, Acta oto-laryngologica.

[21]  Richard R. Fay,et al.  Structure and Function in Sound Discrimination Among Vertebrates , 1992 .

[22]  S. Hemilä,et al.  What middle ear parameters tell about impedance matching and high frequency hearing , 1995, Hearing Research.

[23]  B. Bohne,et al.  Location of structurally similar areas in chinchilla cochleas of different lengths. , 1979, The Journal of the Acoustical Society of America.

[24]  H. Heffner,et al.  Hearing in two cricetid rodents: wood rat (Neotoma floridana) and grasshopper mouse (Onychomys leucogaster). , 1985, Journal of comparative psychology.

[25]  J. Turkkan,et al.  Pure tone thresholds in the yellow baboon (Papio cynocephalus) , 1982, Hearing Research.

[26]  S. Begall,et al.  ECOLOGICAL DETERMINANTS OF VOCALISATION PARAMETERS: THE CASE OF THE CORURO SPALACOPUS CYANUS (OCTODONTIDAE), A FOSSORIAL SOCIAL RODENT , 2000 .

[27]  O. Reig Ecological Notes on the Fossorial Octodont Rodent Spalacopus Cyanus (Molina) , 1970 .

[28]  L. Emmons,et al.  Species groups in Proechimys (Rodentia: Echimyidae) as indicated by karyology and bullar morphology , 1984 .

[29]  B Masterton,et al.  Behavioral measurements of absolute and frequency-difference thresholds in guinea pig. , 1971, The Journal of the Acoustical Society of America.

[30]  James D. Miller Audibility curve of the chinchilla , 1970 .

[31]  C. Fernández Dimensions of the Cochlea (Guinea Pig) , 1952 .

[32]  Henry E. Heffner,et al.  Hearing and sound localization in blind mole rats (Spalax ehrenbergi) , 1992, Hearing Research.

[33]  C. Schleich,et al.  FUNCTIONAL MORPHOLOGY OF THE MIDDLE EAR OF Ctenomys talarum (RODENTIA: OCTODONTIDAE) , 2004 .

[34]  Henry E. Heffner,et al.  Hearing in large mammals: Horses (Equus caballus) and cattle (Bos taurus). , 1983 .

[35]  Julia Stalleicken,et al.  Functional morphology of the ear in fossorial rodents, Microtus arvalis and Arvicola terrestris , 2004, Journal of morphology.

[36]  S. Daan,et al.  ACTIVITY PATTERNS IN A SUBTERRANEAN SOCIAL RODENT, SPALACOPUS CYANUS (OCTODONTIDAE) , 2002 .

[37]  J. Kimm,et al.  Reaction-time procedure for measurement of hearing. I. Suprathreshold functions. , 1975, The Journal of the Acoustical Society of America.

[38]  H. Heffner,et al.  Hearing in Glires: Domestic rabbit, cotton rat, feral house mouse, and kangaroo rat , 1980 .

[39]  M. Mason THE MIDDLE EAR APPARATUS OF THE TUCO-TUCO CTENOMYS SOCIABILIS (RODENTIA, CTENOMYIDAE) , 2004 .

[40]  E. Nevo,et al.  Middle ear and cochlear receptors in the subterranean mole-rat, Spalax ehrenbergi , 1989, Hearing Research.

[41]  H. Heffner,et al.  Vestigial hearing in a fossorial mammal, the pocket gopher (Geomys bursarius) , 1990, Hearing Research.

[42]  H. Burda Qualitative assessment of postnatal maturation of the organ of Corti in two rat strains , 1985, Hearing Research.

[43]  H. Heffner,et al.  Degenerate hearing and sound localization in naked mole rats (Heterocephalus glaber), with an overview of central auditory structures , 1993, The Journal of comparative neurology.

[44]  C D West,et al.  The relationship of the spiral turns of the cochlea and the length of the basilar membrane to the range of audible frequencies in ground dwelling mammals. , 1985, The Journal of the Acoustical Society of America.

[45]  M. Mason,et al.  Middle ear structures in fossorial mammals: a comparison with non‐fossorial species , 2006 .