Fourier synthesis dispersion engineering of photonic crystal microrings for broadband frequency combs

[1]  Qi-Fan Yang,et al.  Integrated vortex soliton microcombs , 2022, 2212.07639.

[2]  Y. Liu,et al.  Integrated Optical Vortex Microcomb , 2022, 2212.07641.

[3]  K. Srinivasan,et al.  Wavelength-accurate nonlinear conversion through wavenumber selectivity in photonic crystal resonators , 2022, Nature Photonics.

[4]  K. Srinivasan,et al.  Integrated Buried Heaters for Efficient Spectral Control of Air-Clad Microresonator Frequency Combs , 2022, APL Photonics.

[5]  S. Papp,et al.  Tailoring microcombs with inverse-designed, meta-dispersion microresonators , 2022, Nature Photonics.

[6]  D. Englund,et al.  Highly-twisted states of light from a high quality factor photonic crystal ring , 2022, Nature Communications.

[7]  F. Zhou,et al.  Kerr optical parametric oscillation in a photonic crystal microring for accessing the infrared. , 2022, Optics letters.

[8]  K. Srinivasan,et al.  Engineering of Modal Coupling of Counter-Propagating Waves for Multi-Color Dissipative Kerr Soliton Operation , 2022, Conference on Lasers and Electro-Optics.

[9]  K. Srinivasan,et al.  Towards Lower Repetition Rate and Visible Wavelength Microresonator Frequency Combs for Optical Atomic Clocks , 2022, 2022 Conference on Lasers and Electro-Optics (CLEO).

[10]  F. Zhou,et al.  Fractional Optical Angular Momentum and Multi-Defect-Mediated Mode Renormalization and Orientation Control in Photonic Crystal Microring Resonators. , 2022, Physical review letters.

[11]  F. Lei,et al.  Surpassing the nonlinear conversion efficiency of soliton microcombs , 2022, Nature Photonics.

[12]  K. Srinivasan,et al.  Impact of the precursor gas ratio on dispersion engineering of broadband silicon nitride microresonator frequency combs. , 2021, Optics letters.

[13]  K. Srinivasan,et al.  High-Q slow light and its localization in a photonic crystal microring , 2021, Nature Photonics.

[14]  T. Kippenberg,et al.  Compact, spatial-mode-interaction-free, ultralow-loss, nonlinear photonic integrated circuits , 2021, Communications Physics.

[15]  P. Andrekson,et al.  Integrated, Ultra‐Compact High‐Q Silicon Nitride Microresonators for Low‐Repetition‐Rate Soliton Microcombs , 2021, Laser & Photonics Reviews.

[16]  N. J. Engelsen,et al.  High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits , 2021, 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[17]  J. Bowers,et al.  Towards integrated photonic interposers for processing octave-spanning microresonator frequency combs , 2021, Light, science & applications.

[18]  K. Srinivasan,et al.  Ultra-broadband Kerr microcomb through soliton spectral translation , 2021, Nature Communications.

[19]  P. Andrekson,et al.  Dissipative solitons in photonic molecules , 2021, Nature Photonics.

[20]  M. Qi,et al.  Switching dynamics of dark-pulse Kerr frequency comb states in optical microresonators , 2021, Physical Review A.

[21]  K. Vahala,et al.  Dirac solitons in optical microresonators , 2020, 2021 Conference on Lasers and Electro-Optics (CLEO).

[22]  M. Dijkstra,et al.  Mode-splitting in a microring resonator for self-referenced biosensing. , 2020, Optics express.

[23]  D. Skryabin,et al.  Soliton blockade in bidirectional microresonators. , 2020, Optics letters.

[24]  K. Srinivasan,et al.  A universal frequency engineering tool for microcavity nonlinear optics: multiple selective mode splitting of whispering-gallery resonances. , 2020, Photonics research.

[25]  T. Kippenberg,et al.  Zero dispersion Kerr solitons in optical microresonators , 2020, Nature Communications.

[26]  K. Thyagarajan,et al.  Advanced dispersion engineering of a III-nitride micro-resonator for a blue frequency comb. , 2020, Optics express.

[27]  N. J. Engelsen,et al.  High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits , 2020, Nature Communications.

[28]  T. Kippenberg,et al.  Emergent nonlinear phenomena in a driven dissipative photonic dimer , 2020, Nature Physics.

[29]  John Bowers,et al.  Towards integrated photonic interposers for processing octave-spanning microresonator frequency combs , 2020, Light: Science & Applications.

[30]  H. Tang,et al.  Pockels soliton microcomb , 2020, Nature Photonics.

[31]  K. Srinivasan,et al.  Spontaneous pulse formation in edgeless photonic crystal resonators , 2020, Nature Photonics.

[32]  C. Ciminelli,et al.  Comprehensive mathematical modelling of ultra-high Q grating-assisted ring resonators , 2020, Journal of Optics.

[33]  John E. Bowers,et al.  Integrated turnkey soliton microcombs , 2019, Nature.

[34]  R. Magnusson,et al.  Essential differences between TE and TM band gaps in periodic films at the first Bragg condition. , 2019, Optics letters.

[35]  T. Kippenberg,et al.  Photonic chip-based resonant supercontinuum via pulse-driven Kerr microresonator solitons , 2019, Optica.

[36]  Qing Li,et al.  pyLLE: a Fast and User Friendly Lugiato-Lefever Equation Solver , 2019, Journal of research of the National Institute of Standards and Technology.

[37]  M. Lipson,et al.  Battery-operated integrated frequency comb generator , 2018, Nature.

[38]  Marko Loncar,et al.  Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation , 2018, Nature Communications.

[39]  Luke Theogarajan,et al.  An optical-frequency synthesizer using integrated photonics , 2018, Nature.

[40]  M. Lipson,et al.  Fully integrated ultra-low power Kerr comb generation , 2018 .

[41]  Qing Li,et al.  Phased-locked two-color single soliton microcombs in dispersion-engineered Si3N4 resonators. , 2018, Optics letters.

[42]  Xinbai Li,et al.  Towards visible soliton microcomb generation , 2017, Nature Communications.

[43]  S. Coen,et al.  Universal mechanism for the binding of temporal cavity solitons , 2017, 1703.10604.

[44]  Valery Lobanov,et al.  Dissipative Kerr solitons and Cherenkov radiation in optical microresonators with third-order dispersion , 2017, 1702.08750.

[45]  Erwan Lucas,et al.  Octave-spanning dissipative Kerr soliton frequency combs in Si 3 N 4 microresonators , 2017, 1701.08594.

[46]  Qing Li,et al.  Stably accessing octave-spanning microresonator frequency combs in the soliton regime. , 2016, Optica.

[47]  N. Litchinitser,et al.  Orbital angular momentum microlaser , 2016, Science.

[48]  Q. Lin,et al.  Multicolor cavity soliton. , 2016, Optics express.

[49]  M. Qi,et al.  Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators , 2016, Nature Communications.

[50]  M. Gorodetsky,et al.  Dissipative Kerr solitons in optical microresonators , 2015, Science.

[51]  Sailing He,et al.  Experimental Demonstration of Single Mode- Splitting in Microring With Bragg Gratings , 2015, IEEE Photonics Technology Letters.

[52]  V. Brasch,et al.  Photonic chip–based optical frequency comb using soliton Cherenkov radiation , 2014, Science.

[53]  Qiang Lin,et al.  Selective engineering of cavity resonance for frequency matching in optical parametric processes , 2014, 1407.4488.

[54]  T. Hansson,et al.  Dynamics of the modulational instability in microresonator frequency combs , 2013, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[55]  C. Menyuk,et al.  Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators , 2012, 1210.8210.

[56]  O. Painter,et al.  Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment. , 2005, Optics express.

[57]  C. Martijn de Sterke,et al.  Bragg solitons in the nonlinear Schrödinger limit: experiment and theory , 1999 .

[58]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[59]  Karlsson,et al.  Cherenkov radiation emitted by solitons in optical fibers. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[60]  R. Lefever,et al.  Spatial dissipative structures in passive optical systems. , 1987, Physical review letters.

[61]  Grant M. Brodnik,et al.  Optical-parametric oscillation in photonic-crystal ring resonators , 2022 .

[62]  R. Klausen,et al.  Selective , 2020, Encyclopedia of the UN Sustainable Development Goals.