The X-ray absorbing column density of a complete sample of bright Swift gamma-ray bursts

A complete sample of bright Swift Gamma–ray Bursts (GRBs) has been recently selected by Salvaterra et al. (2011). The sample has a high level of completeness in redshift (90%). We derive here the intrinsic absorbing X–ray column densities of these GRBs making use of the Swift X–ray Telescope data. This distribution has a mean value of log(NH/cm 2 ) = 21.7 ± 0.5. This value is consistent with the distribution of the column densities derived from the total sample of GRBs with redshift. We find a mild increase of the intrinsic column density with redshift. This can be interpreted as due to the contribution of intervening systems along the line of sight. Making use of the spectral index connecting optical and X–ray fluxes at 11 hr (βOX), we investigate the relation of the intrinsic column density and the GRB ‘darkness’. We find that there is a very tight correlation between dark GRBs and high X–ray column densities. This clearly indicates that the dark GRBs are formed in a metal-rich environment where dust must be present.

[1]  M. Rees,et al.  Optical and Long-Wavelength Afterglow from Gamma-Ray Bursts , 1996, astro-ph/9606043.

[2]  B. Draine,et al.  Gamma-Ray Burst in a Molecular Cloud: Destruction of Dust and H2 and the Emergent Spectrum , 2001, astro-ph/0108243.

[3]  Titus J. Galama,et al.  High Column Densities and Low Extinctions of Gamma-Ray Bursts: Evidence for Hypernovae and Dust Destruction , 2000, astro-ph/0009367.

[4]  Davide Lazzati,et al.  Time-dependent photoionization opacities in dense gamma-ray burst environments , 2001 .

[5]  C. Guidorzi,et al.  Detection of the optical afterglow of GRB 000630: Implications for dark bursts , 2001, astro-ph/0101425.

[6]  Daniel E. Reichart,et al.  Evidence for a Molecular Cloud Origin of Gamma-ray Bursts: Implications for the nature of star formation in the universe , 2002 .

[7]  S. Covino,et al.  On the role of extinction in failed gamma-ray burst optical/infrared afterglows , 2002 .

[8]  Cambridge,et al.  A homogeneous sample of sub-damped Lyman α systems – II. Statistical, kinematic and chemical properties , 2003, astro-ph/0307050.

[9]  B. Draine INTERSTELLAR DUST GRAINS , 2003, astro-ph/0304489.

[10]  L. A. Antonelli,et al.  Absorption in Gamma-Ray Burst Afterglows , 2004, astro-ph/0403149.

[11]  G. Tagliaferri,et al.  A Metal-rich Molecular Cloud Surrounds GRB 050904 at Redshift 6.3 , 2006, astro-ph/0611305.

[12]  IoA,et al.  On the Incidence of Strong Mg II Absorbers along Gamma-Ray Burst Sight Lines , 2006 .

[13]  D. A. Kann,et al.  Signatures of Extragalactic Dust in Pre-Swift GRB Afterglows , 2006 .

[14]  P. Giommi,et al.  The X-ray afterglow of the short gamma ray burst 050724 , 2006 .

[15]  S. Woosley,et al.  The Supernova Gamma-Ray Burst Connection , 2006, astro-ph/0609142.

[16]  T. S. Koch,et al.  THE FIRST SWIFT ULTRAVIOLET/OPTICAL TELESCOPE GRB AFTERGLOW CATALOG , 2008, 0809.4193.

[17]  E. Rol,et al.  The Early-Time Optical Properties of Gamma-Ray Burst Afterglows , 2008 .

[18]  J. P. Osborne,et al.  Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs , 2008, 0812.3662.

[19]  E. O. Ofek,et al.  DARK BURSTS IN THE SWIFT ERA: THE PALOMAR 60 INCH-SWIFT EARLY OPTICAL AFTERGLOW CATALOG , 2008, 0808.3983.

[20]  E. Rol,et al.  OPTICAL CLASSIFICATION OF GAMMA-RAY BURSTS IN THE SWIFT ERA , 2009, 0905.0524.

[21]  A. U. Postigo,et al.  The X-ray absorbing column densities of Swift gamma-ray bursts , 2009, 0911.1214.

[22]  Copenhagen,et al.  Statistics and characteristics of MgII absorbers along GRB lines of sight observed with VLT-UVES , 2009, 0906.3269.

[23]  P. Noterdaeme,et al.  Evolution of the cosmological mass density of neutral gas from Sloan Digital Sky Survey II - Data Release 7 , 2009, 0908.1574.

[24]  D. A. Kann,et al.  LOW-RESOLUTION SPECTROSCOPY OF GAMMA-RAY BURST OPTICAL AFTERGLOWS: BIASES IN THE SWIFT SAMPLE AND CHARACTERIZATION OF THE ABSORBERS , 2009, 0907.3449.

[25]  A. J. Levan,et al.  The host galaxies of core‐collapse supernovae and gamma‐ray bursts , 2010, 1001.5042.

[26]  J. Prochaska,et al.  A DEFINITIVE SURVEY FOR LYMAN LIMIT SYSTEMS AT z ∼ 3.5 WITH THE SLOAN DIGITAL SKY SURVEY , 2009, 0912.0292.

[27]  T. Dwelly,et al.  Dust and metal column densities in gamma-ray burst host galaxies , 2009, 0910.2590.

[28]  Johan P. U. Fynbo,et al.  The extinction curves of star-forming regions from z = 0.1 to 6.7 using GRB afterglow spectroscopy , 2011, 1102.1469.

[29]  S. Campana,et al.  A complete sample of bright Swift long gamma-ray bursts: testing the spectral-energy correlations , 2011, 1112.4470.

[30]  P. Schady,et al.  The nature of "dark" gamma-ray bursts , 2010, 1011.0618.

[31]  P. Hewett,et al.  Dusty Mg ii absorbers: population statistics, extinction curves and gamma‐ray burst sightlines , 2011, 1106.0692.

[32]  Sandra Savaglio,et al.  The missing gas problem in GRB host galaxies: evidence for a highly ionised component , 2010, 1010.2034.

[33]  V. Mangano,et al.  The dark bursts population in a complete sample of bright Swift long gamma-ray bursts , 2011, 1112.4480.

[34]  Ehud Behar,et al.  CAN THE SOFT X-RAY OPACITY TOWARD HIGH-REDSHIFT SOURCES PROBE THE MISSING BARYONS? , 2011, 1101.4662.

[35]  Joseph Ribaudo,et al.  A HUBBLE SPACE TELESCOPE STUDY OF LYMAN LIMIT SYSTEMS: CENSUS AND EVOLUTION , 2011, 1105.0659.