Differential Operators on Surfaces and Rational WKB Method

In this paper, we give a simple and geometric, but formal, description of an open subset of the character variety of surface groups into SLn(C). The main ingredient is a modified version of the WKB method, which we call rational WKB method. The geometric interpretation uses higher complex structures introduced by Vladimir Fock and the author. More precisely, the character variety is parametrized by the cotangent bundle of the moduli space of higher complex structures. This generalizes the well-known description of the moduli space of flat SL2(C)-connections by the cotangent bundle of Teichmüller space.

[1]  B. Eynard,et al.  Invariants of algebraic curves and topological expansion , 2007, math-ph/0702045.

[2]  A. Wipf,et al.  Toda Theory and W-Algebra from a Gauged WZNW Point of View , 1990 .

[3]  The Hodge filtration on nonabelian cohomology , 1996, alg-geom/9604005.

[4]  V. V. Sokolov,et al.  Lie algebras and equations of Korteweg-de Vries type , 1985 .

[5]  R. Gillan New Editor-in-Chief for Journal of Physics A: Mathematical and Theoretical , 2014 .

[6]  V. Fock,et al.  Higher Complex Structures , 2019 .

[7]  Volume 14 , 2021, Abasyn Journal of Social Sciences.

[8]  B. Feix Hyperkähler metrics on cotangent bundles , 2001 .

[9]  Albert Marden,et al.  The monodromy groups of Schwarzian equations on closed Riemann surfaces , 1995 .

[10]  B. Eynard,et al.  Reconstructing WKB from topological recursion , 2016, 1606.04498.

[11]  Alexander Thomas Higher Complex Structures and Flat Connections , 2020, 2005.14445.

[12]  Kohei Iwaki,et al.  Exact WKB analysis and cluster algebras , 2014, 1401.7094.

[13]  Alexander Thomas Generalized punctual Hilbert schemes and 𝔤-complex structures , 2020, International Journal of Mathematics.

[14]  V.V.Fock Cosh-Gordon equation and quasi-Fuchsian groups , 2008, 0811.3356.

[15]  I. Kogan,et al.  On the origin of W-algebras , 1991 .

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  L. Bonora,et al.  COVARIANT sl2 DECOMPOSITION OF THE sln DRINFELD-SOKOLOV EQUATIONS AND THE Wn ALGEBRAS , 1991 .

[18]  W. Browder,et al.  Annals of Mathematics , 1889 .

[19]  S. Ana,et al.  Topology , 2018, International Journal of Mathematics Trends and Technology.

[20]  Elba Garcia-Failde,et al.  Quantization of classical spectral curves via topological recursion , 2021, 2106.04339.

[21]  NUCLEAR PHYSICS B , 1994 .

[22]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[23]  A. Voros The return of the quartic oscillator. The complex WKB method , 1983 .

[24]  M. Roček,et al.  Hyperkähler metrics and supersymmetry , 1987 .

[25]  A. Neitzke,et al.  Exact WKB and Abelianization for the $$T_3$$ Equation , 2019, 1906.04271.

[26]  A. Schwarz Quantum Curves , 2014, 1401.1574.

[27]  W. Goldman The Symplectic Nature of Fundamental Groups of Surfaces , 1984 .

[28]  H. Busemann Advances in mathematics , 1961 .

[29]  N. Hitchin LIE-GROUPS AND TEICHMULLER SPACE , 1992 .

[30]  G. Moore,et al.  Spectral Networks , 2012, 1204.4824.

[31]  K. Schoutens,et al.  W symmetry in conformal field theory , 1992, hep-th/9210010.