On some categorical-algebraic conditions in S-protomodular categories

In the context of protomodular categories, several additional conditions have been considered in order to obtain a closer group-like behavior. Among them are locally algebraic cartesian closedness and algebraic coherence. The recent notion of S-protomodular category, whose main examples are the category of monoids and, more generally, categories of monoids with operations and Jo\'{o}nsson-Tarski varieties, raises a similar question: how to get a description of S-protomodular categories with a strong monoid-like behavior. In this paper we consider relative versions of the conditions mentioned above, in order to exhibit the parallelism with the "absolute" protomodular context and to obtain a hierarchy among S-protomodular categories.

[1]  Theo Buehler,et al.  Exact Categories , 2008, 0811.1480.

[2]  P. J. Higgins Groups with Multiple Operators , 1956 .

[3]  A. Patchkoria Crossed Semimodules and Schreier Internal Categories in the Category of Monoids , 1998 .

[4]  W. Tholen,et al.  Semi-abelian categories , 2002 .

[5]  D. Bourn,et al.  Schreier split epimorphisms in monoids and in semirings , 2013 .

[6]  S. A. Huq COMMUTATOR, NILPOTENCY, AND SOLVABILITY IN CATEGORIES , 1968 .

[7]  S. Mantovani,et al.  INTERNAL CROSSED MODULES AND PEIFFER CONDITION , 2010 .

[8]  G. M. Kelly,et al.  Internal object actions , 2005 .

[9]  Nelson Martins-Ferreira,et al.  A Note on the “Smith is Huq” Condition , 2010, Appl. Categorical Struct..

[10]  Nelson Martins-Ferreira,et al.  Semidirect Products and Split Short Five Lemma in Normal Categories , 2014, Appl. Categorical Struct..

[11]  James Richard Andrew Gray,et al.  Algebraic Exponentiation in General Categories , 2012, Appl. Categorical Struct..

[12]  D. Bourn Protomodular aspect of the dual of a topos , 2004 .

[13]  Tim Van der Linden,et al.  Algebraically coherent categories , 2014, 1409.4219.

[14]  G. Janelidze,et al.  CHARACTERIZATION OF PROTOMODULAR VARIETIES OF UNIVERSAL ALGEBRAS , 2003 .

[15]  D. Bourn,et al.  Aspects of algebraic exponentiation , 2011, 1112.4128.

[16]  D. Bourn,et al.  A characterisation of the "Smith is Huq" condition in the pointed Mal'tsev setting , 2013 .

[17]  Jonathan D. H. Smith Mal'cev Varieties , 1977 .

[18]  G. Janelidze,et al.  Protomodularity, descent, and semidirect products. , 1998 .

[19]  Alfred Tarski,et al.  Direct decompositions of finite algebraic systems , 1947 .

[20]  Nelson Martins-Ferreira,et al.  On the “Smith is Huq” Condition in S-Protomodular Categories , 2017, Appl. Categorical Struct..

[21]  M. Pedicchio A Categorical Approach to Commutator Theory , 1995 .

[22]  G. Orzech Obstruction theory in algebraic categories, I☆ , 1972 .

[23]  D. Bourn,et al.  Monoids and pointed $S$-protomodular categories , 2016 .

[24]  D. Bourn Normalization equivalence, kernel equivalence and affine categories , 1991 .