Diffusion asymptotics of a kinetic model for gaseous mixtures

In this work, we investigate the asymptotic behaviour of the solutions to the non-reactive fully elastic Boltzmann equations for mixtures in the diffusive scaling. We deal with cross sections such as hard spheres or cut-off power law potentials. We use Hilbert expansions near the common thermodynamic equilibrium granted by the H-theorem. The lower-order non trivial equality obtained from the Boltzmann equations leads to a linear functional equation in the velocity variable which is solved thanks to the Fredholm alternative. Since we consider multicomponent mixtures, the classical techniques introduced by Grad cannot be applied, and we propose a new method to treat the terms involving particles with different masses. The next-order equality in the Hilbert expansion then allows to write the macroscopic continuity equations for each component of the mixture.

[1]  J. Ross,et al.  Some Deductions from a Formal Statistical Mechanical Theory of Chemical Kinetics , 1961 .

[2]  Shi Jin,et al.  A BGK‐penalization‐based asymptotic‐preserving scheme for the multispecies Boltzmann equation , 2013 .

[3]  Giampiero Spiga,et al.  A note on the kinetic theory of chemically reacting gases , 1999 .

[4]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[5]  R. Krishna,et al.  The Maxwell-Stefan approach to mass transfer , 1997 .

[6]  Luc Mieussens,et al.  An asymptotic preserving scheme for the Kac model of the Boltzmann equation in the diffusion limit , 2009 .

[7]  Laure Saint-Raymond,et al.  The Incompressible Navier-Stokes Limit of the Boltzmann Equation for Hard Cutoff Potentials , 2008, 0808.0039.

[8]  Francesco Salvarani,et al.  A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions , 2005 .

[9]  Shi-Hsien Yu,et al.  Hydrodynamic limits with shock waves of the Boltzmann equation , 2005 .

[10]  H. L. Toor,et al.  An experimental study of three component gas diffusion , 1962 .

[11]  François Golse,et al.  Fluid dynamic limits of kinetic equations II convergence proofs for the boltzmann equation , 1993 .

[12]  P. Degond Macroscopic limits of the Boltzmann equation: a review , 2004 .

[13]  P. Le Tallec,et al.  Microreversible collisions for polyatomic gases and Boltzmann's theorem , 1994 .

[14]  L. Sirovich Kinetic Modeling of Gas Mixtures , 2011 .

[15]  D. Hilbert Mathematical Problems , 2019, Mathematics: People · Problems · Results.

[16]  Yi Wang,et al.  Fluid dynamic limit to the Riemann Solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity , 2010, 1011.1990.

[17]  Harold Grad,et al.  Asymptotic Theory of the Boltzmann Equation, II , 1963 .

[18]  Christian Dogbe FLUID DYNAMIC LIMITS FOR GAS MIXTURE I: FORMAL DERIVATIONS , 2008 .

[19]  P. Lions,et al.  From the Boltzmann Equations¶to the Equations of¶Incompressible Fluid Mechanics, II , 2001 .

[20]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases : an account of the kinetic theory of viscosity, thermal conduction, and diffusion in gases , 1954 .

[21]  Pierre-Louis Lions,et al.  From the Boltzmann Equations¶to the Equations of¶Incompressible Fluid Mechanics, I , 2001 .

[22]  Claude Bardos,et al.  Sur les limites asymptotiques de la théorie cinétique conduisant à la dynamique des fluides incompressibles , 1989 .

[23]  G. B. The Dynamical Theory of Gases , 1916, Nature.

[24]  Harold Grad,et al.  Asymptotic Theory of the Boltzmann Equation , 1963 .

[25]  T. F. Morse,et al.  Kinetic Model Equations for a Gas Mixture , 1964 .

[26]  D. E. Greene Mathematical aspects of kinetic model equations for binary gas mixtures , 1975 .

[27]  Qin Li,et al.  A BGK-penalization asymptotic-preserving scheme for the multispecies Boltzmann equation ∗ , 2011 .

[28]  F. Golse,et al.  Fluid dynamic limits of kinetic equations. I. Formal derivations , 1991 .

[29]  Feimin Huang,et al.  Hydrodynamic Limit of the Boltzmann Equation with Contact Discontinuities , 2009, 0904.1836.

[30]  François Golse,et al.  The Navier–Stokes limit of the Boltzmann equation for bounded collision kernels , 2004 .

[31]  R. Esposito,et al.  Binary Fluids with Long Range Segregating Interaction. I: Derivation of Kinetic and Hydrodynamic Equations , 2000 .