Auctions with severely bounded communication

We study auctions with severe bounds on the communication allowed: each bidder may only transmit t bits of information to the auctioneer. We consider both welfare-maximizing and revenue-maximizing auctions under this communication restriction. For both measures, we determine the optimal auction and show that the loss incurred relative to unconstrained auctions is mild. We prove unsurprising properties of these kinds of auctions, e.g. that discrete prices are informationally efficient, as well as some surprising properties, e.g. that asymmetric auctions are better than symmetric ones.

[1]  Noam Nisan,et al.  Bidding and allocation in combinatorial auctions , 2000, EC '00.

[2]  David Levine,et al.  CABOB: A Fast Optimal Algorithm for Combinatorial Auctions , 2001, IJCAI.

[3]  Y. Shoham,et al.  Truth revelation in rapid, approximately efficient combinatorial auctions , 2001 .

[4]  Tad Hogg,et al.  Spawn: A Distributed Computational Economy , 1992, IEEE Trans. Software Eng..

[5]  Felix Wu,et al.  Incentive-compatible online auctions for digital goods , 2002, SODA '02.

[6]  Dilip Mookherjee,et al.  Dominant Strategy Implementation of Bayesian incentive Compatible Allocation Rules , 1992 .

[7]  Joan Feigenbaum,et al.  Sharing the cost of muliticast transmissions (preliminary version) , 2000, STOC '00.

[8]  F. Mosteller,et al.  Recognizing the Maximum of a Sequence , 1966 .

[9]  Roger B. Myerson,et al.  Optimal Auction Design , 1981, Math. Oper. Res..

[10]  E. Maskin,et al.  A Differential Approach to Dominant Strategy Mechanisms , 1980 .

[11]  M. Rothkopf,et al.  Why Are Vickrey Auctions Rare? , 1990, Journal of Political Economy.

[12]  Andrew V. Goldberg,et al.  Competitive auctions and digital goods , 2001, SODA '01.

[13]  Hal R. Varian,et al.  Economic Mechanism Design for Computerized Agents , 1995, USENIX Workshop on Electronic Commerce.

[14]  N. Nisan,et al.  The Communication Complexity of Efficient Allocation Problems , 2002 .

[15]  Noam Nisan,et al.  An efficient approximate allocation algorithm for combinatorial auctions , 2001, EC '01.

[16]  Noam Nisan,et al.  Algorithms for Selfish Agents , 1999, STACS.

[17]  N. Nisan,et al.  Globally distributed computation over the Internet-the POPCORN project , 1998, Proceedings. 18th International Conference on Distributed Computing Systems (Cat. No.98CB36183).

[18]  Ariel Orda,et al.  Architecting noncooperative networks , 1995, Eighteenth Convention of Electrical and Electronics Engineers in Israel.

[19]  A. Roth,et al.  Last Minute Bidding and the Rules for Ending Second-Price Auctions: Theory and Evidence from a Natural Experiment on the Internet , 2000 .

[20]  Ilya Segal,et al.  Optimal Pricing Mechanisms with Unknown Demand , 2002 .

[21]  Nimrod Megiddo,et al.  Improved Algorithms and Analysis for Secretary Problems and Generalizations , 2001, SIAM J. Discret. Math..

[22]  Michael H. Rothkopf,et al.  On the role of discrete bid levels in oral auctions , 1994 .

[23]  Susan Athey,et al.  Single Crossing Properties and the Existence of Pure Strategy Equilibria in Games of Incomplete Information , 1997 .

[24]  Eduardo Alonso Fernández,et al.  Rules of encounter: designing conventions for automated negotiation among computers , 1995 .

[25]  A. Roth,et al.  Last-Minute Bidding and the Rules for Ending Second-Price Auctions: Evidence from eBay and Amazon Auctions on the Internet , 2002 .

[26]  Eyal Kushilevitz,et al.  Communication Complexity , 1997, Adv. Comput..

[27]  Robert B. Wilson Efficient and Competitive Rationing , 1989 .

[28]  Noam Nisan,et al.  Competitive analysis of incentive compatible on-line auctions , 2004, Theor. Comput. Sci..

[29]  Paul R. Milgrom,et al.  Envelope Theorems for Arbitrary Choice Sets , 2002 .

[30]  Sven de Vries,et al.  Combinatorial Auctions: A Survey , 2003, INFORMS J. Comput..

[31]  Deborah Estrin,et al.  Pricing in Computer Networks: Reshaping the Research Agenda , 2020, The Internet and Telecommunications Policy.

[32]  Michael P. Wellman,et al.  Auction Protocols for Decentralized Scheduling , 2001, Games Econ. Behav..

[33]  Noam Nisany,et al.  The Communication Requirements of E¢cient Allocations and Supporting Lindahl Prices¤ , 2003 .

[34]  S. Shenker,et al.  Pricing in computer networks: reshaping the research agenda , 1996, CCRV.

[35]  Christos H. Papadimitriou,et al.  Algorithms, Games, and the Internet (Extended Abstract) , 2001 .

[36]  Liad Blumrosen,et al.  Online Markets for Distributed Market Services: the MAJIC system , 2001 .

[37]  William Vickrey,et al.  Counterspeculation, Auctions, And Competitive Sealed Tenders , 1961 .

[38]  Christos H. Papadimitriou,et al.  Algorithms, games, and the internet , 2001, STOC '01.

[39]  R. McAfee Coarse Matching , 2001 .

[40]  Donald F. Ferguson,et al.  Economic models for allocating resources in computer systems , 1996 .