A scalable parallel algorithm for large-scale reactive force-field molecular dynamics simulations

Abstract A scalable parallel algorithm has been designed to perform multimillion-atom molecular dynamics (MD) simulations, in which first principles-based reactive force fields (ReaxFF) describe chemical reactions. Environment-dependent bond orders associated with atomic pairs and their derivatives are reused extensively with the aid of linked-list cells to minimize the computation associated with atomic n-tuple interactions ( n ⩽ 4 explicitly and ⩽6 due to chain-rule differentiation). These n-tuple computations are made modular, so that they can be reconfigured effectively with a multiple time-step integrator to further reduce the computation time. Atomic charges are updated dynamically with an electronegativity equalization method, by iteratively minimizing the electrostatic energy with the charge-neutrality constraint. The ReaxFF-MD simulation algorithm has been implemented on parallel computers based on a spatial decomposition scheme combined with distributed n-tuple data structures. The measured parallel efficiency of the parallel ReaxFF-MD algorithm is 0.998 on 131,072 IBM BlueGene/L processors for a 1.01 billion-atom RDX system.

[1]  M. Karplus,et al.  A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations , 1990 .

[2]  K. Morokuma,et al.  A NEW ONIOM IMPLEMENTATION IN GAUSSIAN98. PART I. THE CALCULATION OF ENERGIES, GRADIENTS, VIBRATIONAL FREQUENCIES AND ELECTRIC FIELD DERIVATIVES , 1999 .

[3]  Rajiv K. Kalia,et al.  DYNAMICS OF OXIDATION OF ALUMINUM NANOCLUSTERS USING VARIABLE CHARGE MOLECULAR-DYNAMICS SIMULATIONS ON PARALLEL COMPUTERS , 1999 .

[4]  A. V. Duin,et al.  Adhesion and nonwetting-wetting transition in the Al/alpha-Al_2O_3 interface , 2004 .

[5]  J. J. Gilman,et al.  During detonation chemistry may precede heat , 2006 .

[6]  Donald W. Brenner,et al.  The Art and Science of an Analytic Potential , 2000 .

[7]  A. V. van Duin,et al.  Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field. , 2005, Journal of the American Chemical Society.

[8]  Ieee Xplore Computing in science & engineering , 1999 .

[9]  R. Williams,et al.  Journal of American Chemical Society , 1979 .

[10]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules J. Am. Chem. Soc. 1995, 117, 5179−5197 , 1996 .

[11]  A. V. van Duin,et al.  Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. , 2005, The journal of physical chemistry. A.

[12]  Kevin L. McNesby,et al.  Multimillion Atom Reactive Simulations of Nanostructured Energetic Materials , 2007 .

[13]  Rajiv K. Kalia,et al.  Hybrid finite-element/molecular-dynamics/electronic-density-functional approach to materials simulations on parallel computers , 2001 .

[14]  Aiichiro Nakano,et al.  Parallel multilevel preconditioned conjugate-gradient approach to variable-charge molecular dynamics , 1997 .

[15]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[16]  C. Brooks Computer simulation of liquids , 1989 .

[17]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[19]  Wilfried J. Mortier,et al.  Electronegativity-equalization method for the calculation of atomic charges in molecules , 1986 .

[20]  E. Ungureanu,et al.  Molecular Physics , 2008, Nature.

[21]  Subhash Saini,et al.  Scalable atomistic simulation algorithms for materials research , 2002 .

[22]  Wade Babcock,et al.  Computational materials science , 2004 .

[23]  Journal of Chemical Physics , 1932, Nature.

[24]  J. W.,et al.  The Journal of Physical Chemistry , 1900, Nature.

[25]  U. Singh,et al.  A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: Applications to the CH3Cl + Cl− exchange reaction and gas phase protonation of polyethers , 1986 .

[26]  A. V. van Duin,et al.  Shock waves in high-energy materials: the initial chemical events in nitramine RDX. , 2003, Physical review letters.

[27]  A. V. Duin,et al.  A Divide-and-Conquer/Cellular-Decomposition Framework for Million-to-Billion Atom Simulations of Chemical Reactions , 2007 .

[28]  M. Levitt,et al.  Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. , 1976, Journal of molecular biology.

[29]  Donald G. Truhlar,et al.  Computational chemistry , 2000, Comput. Sci. Eng..

[30]  Frederick H. Streitz,et al.  Electrostatic potentials for metal-oxide surfaces and interfaces. , 1994 .

[31]  Erik E. Santiso,et al.  Multi-scale Molecular Modeling of Chemical Reactivity , 2004 .

[32]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[33]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[34]  Mark E. Tuckerman,et al.  Explicit reversible integrators for extended systems dynamics , 1996 .

[35]  Bartek Rajwa,et al.  A numerical recipe for accurate image reconstruction from discrete orthogonal moments , 2007, Pattern Recognit..

[36]  October I Physical Review Letters , 2022 .

[37]  Mark E. Tuckerman,et al.  Exploiting multiple levels of parallelism in Molecular Dynamics based calculations via modern techniques and software paradigms on distributed memory computers , 2000 .

[38]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[39]  Journal of Molecular Biology , 1959, Nature.

[40]  W. Goddard,et al.  Charge equilibration for molecular dynamics simulations , 1991 .

[41]  A. V. Duin,et al.  ReaxFFSiO Reactive Force Field for Silicon and Silicon Oxide Systems , 2003 .