Motion and tilt aftereffects occur largely in retinal, not in object, coordinates in the Ternus-Pikler display.

Recent studies have shown that a variety of aftereffects occurs in a non-retinotopic frame of reference. These findings have been taken as strong evidence that remapping of visual information occurs in a hierarchic manner in the human cortex with an increasing magnitude from early to higher levels. Other studies, however, failed to find non-retinotopic aftereffects. These experiments all relied on paradigms involving eye movements. Recently, we have developed a new paradigm, based on the Ternus-Pikler display, which tests retinotopic vs. non-retinotopic processing without the involvement of eye movements. Using this paradigm, we found strong evidence that attention, form, and motion processing can occur in a non-retinotopic frame of reference. Here, we show that motion and tilt aftereffects are largely retinotopic.

[1]  N. Weisstein,et al.  A phantom-motion aftereffect. , 1977, Science.

[2]  D. Burr Motion smear , 1980, Nature.

[3]  J T Petersik,et al.  Effects of spatial parameters on the perceptual organization of a bistable motion display , 1980, Perception & psychophysics.

[4]  David E. Irwin,et al.  Integrating visual information from successive fixations. , 1982, Science.

[5]  D. Burr,et al.  Seeing objects in motion , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[6]  B. Butler,et al.  Spatiotopic and retinotopic components of iconic memory , 1987, Psychological research.

[7]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[8]  M. Bach,et al.  The Freiburg Visual Acuity test--automatic measurement of visual acuity. , 1996, Optometry and vision science : official publication of the American Academy of Optometry.

[9]  D. E. Irwin Integrating Information Across Saccadic Eye Movements , 1996 .

[10]  M. Goldberg,et al.  Spatial processing in the monkey frontal eye field. I. Predictive visual responses. , 1997, Journal of neurophysiology.

[11]  A. Dale,et al.  From retinotopy to recognition: fMRI in human visual cortex , 1998, Trends in Cognitive Sciences.

[12]  Patrick Cavanagh,et al.  Higher order effects , 1998 .

[13]  S S Shimozaki,et al.  The maintenance of apparent luminance of an object. , 1999, Journal of experimental psychology. Human perception and performance.

[14]  Kae Nakamura,et al.  Updating of the visual representation in monkey striate and extrastriate cortex during saccades , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[15]  R. Wurtz,et al.  A Pathway in Primate Brain for Internal Monitoring of Movements , 2002, Science.

[16]  David Melcher,et al.  Spatiotopic temporal integration of visual motion across saccadic eye movements , 2003, Nature Neuroscience.

[17]  Anna Ma-Wyatt,et al.  Saccades actively maintain perceptual continuity , 2004, Nature Neuroscience.

[18]  S. Nishida Motion-Based Analysis of Spatial Patterns by the Human Visual System , 2004, Current Biology.

[19]  J. Crawford,et al.  Transsaccadic integration of visual features in a line intersection task , 2006, Experimental Brain Research.

[20]  D. Melcher Spatiotopic Transfer of Visual-Form Adaptation across Saccadic Eye Movements , 2005, Current Biology.

[21]  Robert H. Wurtz,et al.  Influence of the thalamus on spatial visual processing in frontal cortex , 2006, Nature.

[22]  Haluk Öğmen,et al.  Perceptual grouping induces non-retinotopic feature attribution in human vision , 2006, Vision Research.

[23]  M Concetta Morrone,et al.  Neural mechanisms for timing visual events are spatially selective in real-world coordinates , 2007, Nature Neuroscience.

[24]  Haluk Öğmen,et al.  A theory of moving form perception: Synergy between masking, perceptual grouping, and motion computation in retinotopic and non-retinotopic representations , 2008, Advances in Cognitive Psychology.

[25]  D. Melcher Predictive remapping of visual features precedes saccadic eye movements , 2007, Nature Neuroscience.

[26]  Nicholas E. Scott-Samuel,et al.  Spatial versus temporal grouping in a modified Ternus display , 2007, Vision Research.

[27]  Junji Watanabe,et al.  Veridical perception of moving colors by trajectory integration of input signals. , 2007, Journal of vision.

[28]  S. Nishida,et al.  Human Visual System Integrates Color Signals along a Motion Trajectory , 2007, Current Biology.

[29]  Kazushi Maruya,et al.  Adaptation to invisible motion results in low-level but not high-level aftereffects. , 2008, Journal of vision.

[30]  Julie D. Golomb,et al.  The Native Coordinate System of Spatial Attention Is Retinotopic , 2008, The Journal of Neuroscience.

[31]  Thomas Wachtler,et al.  Perceptual evidence for saccadic updating of color stimuli. , 2008, Journal of vision.

[32]  Sarah D. Vollmer,et al.  Object continuity and the transsaccadic representation of form , 2008, Perception & psychophysics.

[33]  David Melcher,et al.  Dynamic, object-based remapping of visual features in trans-saccadic perception. , 2008, Journal of vision.

[34]  Arash Afraz,et al.  Topography of the motion aftereffect with and without eye movements. , 2008, Journal of vision.

[35]  C. Colby,et al.  Trans-saccadic perception , 2008, Trends in Cognitive Sciences.

[36]  Patrick Cavanagh,et al.  Mobile computation: spatiotemporal integration of the properties of objects in motion. , 2008, Journal of vision.

[37]  P. Wenderoth,et al.  Retinotopic encoding of the direction aftereffect , 2008, Vision Research.

[38]  Jan Theeuwes,et al.  Evidence for the predictive remapping of visual attention , 2009, Experimental Brain Research.

[39]  Joseph Krummenacher,et al.  A (fascinating) litmus test for human retino- vs. non-retinotopic processing. , 2009, Journal of vision.

[40]  Patrick Cavanagh,et al.  The reference frame of the motion aftereffect is retinotopic. , 2009, Journal of vision.

[41]  P. Cavanagh,et al.  The gender-specific face aftereffect is based in retinotopic not spatiotopic coordinates across several natural image transformations. , 2009, Journal of vision.

[42]  E. Zohary,et al.  Pattern matching is assessed in retinotopic coordinates. , 2009, Journal of vision.

[43]  J. Bisley,et al.  Psychophysical evidence for spatiotopic processing in area MT in a short-term memory for motion task. , 2009, Journal of neurophysiology.

[44]  Shin'ya Nishida,et al.  Gaze modulation of visual aftereffects , 2010 .

[45]  Michael H. Herzog,et al.  The Geometry of Visual Perception: Retinotopic and Nonretinotopic Representations in the Human Visual System , 2010, Proceedings of the IEEE.

[46]  Patrick Cavanagh,et al.  The reference frame of the tilt aftereffect. , 2011, Journal of vision.

[47]  P. Cavanagh,et al.  Visual stability based on remapping of attention pointers , 2010, Trends in Cognitive Sciences.