Multitaper estimation on arbitrary domains

Multitaper estimators have enjoyed significant success in estimating spectral densities from finite samples using as tapers Slepian functions defined on the acquisition domain. Unfortunately, the numerical calculation of these Slepian tapers is only tractable for certain symmetric domains, such as rectangles or disks. In addition, no performance bounds are currently available for the mean squared error of the spectral density estimate. This situation is inadequate for applications such as cryo-electron microscopy, where noise models must be estimated from irregular domains with small sample sizes. We show that the multitaper estimator only depends on the linear space spanned by the tapers. As a result, Slepian tapers may be replaced by proxy tapers spanning the same subspace (validating the common practice of using partially converged solutions to the Slepian eigenproblem as tapers). These proxies may consequently be calculated using standard numerical algorithms for block diagonalization. We also prove a set of performance bounds for multitaper estimators on arbitrary domains. The method is demonstrated on synthetic and experimental datasets from cryo-electron microscopy, where it reduces mean squared error by a factor of two or more compared to traditional methods.

[1]  Roland Klees,et al.  The spherical Slepian basis as a means to obtain spectral consistency between mean sea level and the geoid , 2012, Journal of Geodesy.

[2]  D. Slepian Prolate spheroidal wave functions, Fourier analysis and uncertainty — IV: Extensions to many dimensions; generalized prolate spheroidal functions , 1964 .

[3]  S. Scheres,et al.  Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine , 2014, eLife.

[4]  Krzysztof M. Gorski On determining the spectrum of primordial inhomogeneity from the COBE DMR sky maps: Method , 1994 .

[5]  On the Distribution of Some Statistical Estimates of Spectral Density , 1983 .

[6]  F. Grünbaum Eigenvectors of a Toeplitz Matrix: Discrete Version of the Prolate Spheroidal Wave Functions , 1981 .

[7]  J. Frank Three-Dimensional Electron Microscopy of Macromolecular Assemblies , 2006 .

[8]  J. Frank,et al.  Determination of signal-to-noise ratios and spectral SNRs in cryo-EM low-dose imaging of molecules. , 2009, Journal of structural biology.

[9]  Joakim Andén,et al.  Factor analysis for spectral estimation , 2017, 2017 International Conference on Sampling Theory and Applications (SampTA).

[10]  Eigenvector matrices of symmetric tridiagonals , 1984 .

[11]  Zhihui Zhu,et al.  The Eigenvalue Distribution of Discrete Periodic Time-Frequency Limiting Operators , 2018, IEEE Signal Processing Letters.

[12]  F. Simons,et al.  Mapping Greenland’s mass loss in space and time , 2012, Proceedings of the National Academy of Sciences.

[13]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[14]  Daan Huybrechs,et al.  Function Approximation on Arbitrary Domains Using Fourier Extension Frames , 2017, SIAM J. Numer. Anal..

[15]  Amit Singer,et al.  Denoising and Covariance Estimation of Single Particle Cryo-EM Images , 2016, Journal of structural biology.

[16]  Kurt S. Riedel,et al.  Minimum bias multiple taper spectral estimation , 2018, IEEE Trans. Signal Process..

[17]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[18]  D. Slepian Some comments on Fourier analysis, uncertainty and modeling , 1983 .

[19]  Simon Haykin,et al.  Cognitive radio: brain-empowered wireless communications , 2005, IEEE Journal on Selected Areas in Communications.

[20]  Frederik J. Simons,et al.  Spatiospectral localization of isostatic coherence anisotropy in Australia and its relation to seismic anisotropy: Implications for lithospheric deformation , 2003 .

[21]  Hans G. Feichtinger,et al.  A numerical study of the Legendre-Galerkin method for the evaluation of the prolate spheroidal wave functions , 2015, Numerical Algorithms.

[22]  K. Grōchenig,et al.  On accumulated spectrograms , 2014, 1404.7713.

[23]  Frederik J. Simons,et al.  Potential-field estimation using scalar and vector slepian functions at satellite altitude , 2015 .

[25]  Holger Rauhut,et al.  Masked Toeplitz covariance estimation , 2017, ArXiv.

[26]  Thomas P. Bronez,et al.  Spectral estimation of irregularly sampled multidimensional processes by generalized prolate spheroidal sequences , 1988, IEEE Trans. Acoust. Speech Signal Process..

[27]  J. Benedetto Harmonic analysis and spectral estimation , 1983 .

[28]  Yonina C. Eldar,et al.  Sub-Nyquist Sampling for Power Spectrum Sensing in Cognitive Radios: A Unified Approach , 2013, IEEE Transactions on Signal Processing.

[29]  Alfred Hanssen Multidimensional multitaper spectral estimation , 1997, Signal Process..

[30]  Zhizhen Zhao,et al.  Fourier-Bessel rotational invariant eigenimages , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[31]  G. Stewart Error and Perturbation Bounds for Subspaces Associated with Certain Eigenvalue Problems , 1973 .

[32]  João M. Pereira,et al.  Sharp rates of convergence for accumulated spectrograms , 2017, 1704.02266.

[33]  F. Simons,et al.  Spatiospectral concentration of vector fields on a sphere , 2013, 1306.3201.

[34]  F. Simons,et al.  Spherical Slepian functions and the polar gap in geodesy , 2005, math/0603271.

[35]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[36]  Jie Ding,et al.  Evolutionary Spectra Based on the Multitaper Method with Application To Stationarity Test , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[37]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[38]  Murray Rosenblatt,et al.  Prolate spheroidal spectral estimates , 2008 .

[39]  Joseph D. Lakey,et al.  On the Numerical Computation of Certain Eigenfunctions of Time and Multiband Limiting , 2012 .

[40]  J. Lakey,et al.  Duration and Bandwidth Limiting , 2012 .

[41]  Y. Shkolnisky,et al.  Sampling and approximation of bandlimited volumetric data , 2018, Applied and Computational Harmonic Analysis.

[42]  C. Hwang Orthogonal functions over the oceans and applications to the determination of orbit error, geoid and sea surface topography from satellite altimetry / , 1991 .

[43]  José Luis Romero,et al.  MSE Estimates for Multitaper Spectral Estimation and Off-Grid Compressive Sensing , 2017, IEEE Transactions on Information Theory.

[44]  Morten Nielsen,et al.  On the Construction and Frequency Localization of Finite Orthogonal Quadrature Filters , 2001, J. Approx. Theory.

[45]  Mark A. Wieczorek,et al.  Spatiospectral Concentration on a Sphere , 2004, SIAM Rev..

[46]  Finite convolution integral operators commuting with differential operators: some counterexamples , 1981 .

[47]  Zhihui Zhu,et al.  ROAST: Rapid Orthogonal Approximate Slepian Transform , 2018, IEEE Transactions on Signal Processing.

[48]  Harrison H. Zhou,et al.  Optimal rates of convergence for estimating Toeplitz covariance matrices , 2013 .

[49]  D. Thomson,et al.  Spectrum estimation and harmonic analysis , 1982, Proceedings of the IEEE.

[50]  D. Donev Prolate Spheroidal Wave Functions , 2017 .

[51]  Frederik J. Simons,et al.  Isostatic response of the Australian lithosphere: Estimation of effective elastic thickness and anisotropy using multitaper spectral analysis , 2000 .

[52]  F. Simons,et al.  Spectral estimation on a sphere in geophysics and cosmology , 2007, 0705.3083.

[53]  F. Simons,et al.  Spatiospectral concentration in the Cartesian plane , 2010, 1007.5226.

[54]  Joakim Andén,et al.  Structural Variability from Noisy Tomographic Projections , 2017, SIAM J. Imaging Sci..

[55]  O Brander,et al.  A generalisation of Slepian's solution for the singular value decomposition of filtered Fourier transforms , 1986 .

[56]  Jie Ding,et al.  Estimation of the Evolutionary Spectra With Application to Stationarity Test , 2018, IEEE Transactions on Signal Processing.

[57]  Yoel Shkolnisky,et al.  Approximation scheme for essentially bandlimited and space-concentrated functions on a disk , 2017 .

[58]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[59]  Donald B. Percival,et al.  Spectral Analysis for Physical Applications , 1993 .