Strain Effects on the Band Structure of Si/Si1-xGex (001) Superlattices

The electronic structure of strained layer Si/Si1–xGex superlattices is calculated by means of the empirical tight-binding method. The influence of strain on band structure is treated by applying interatomic interaction parameters depending on bond lengths and bond angles. Strain effects on band discontinuities are studied. A strain induced type I-type II transition in Si/Si0.5Ge0.5 superlattices on substrates with different lattice constants is obtained. Threshold energies and oscillator strengths of optical band-to-band transitions are reported for short period SinGen superlattices grown on Si1-yGey in dependence on n and y. Die elektronische Struktur verspannter Si/Si1–xGex-Supergitter wird mit der empirischen „tigthbinding”-Methode berechnet, wobei einfache Abhangigkeiten der Wechselwirkunsgparameter von den Bindungslangen und Bindungswinkeln die Spannungsabhangigkeit der Bandstruktur beschreiben. Der Einflus der Verspannung auf die Banddiskontinuitaten wird untersucht. In Si/Si0,5Ge0,5-Supergittern auf Substraten mit unterschiedlichen Gitterkonstanten tritt ein spannungsinduzierter Ubergang von Typ I zu Typ II auf. Fur SinGen-Supergitter mit kurzen Perioden auf Si1-yGey-Substraten werden die Schwellenenergien sowie Oszillatorstarken optischer Band-Band-Ubergange in Abhangigkeit von n und y angegeben.

[1]  Gell Effect of buffer-layer composition on new optical transitions in Si/Ge short-period superlattices. , 1988, Physical review. B, Condensed matter.

[2]  Morrison,et al.  Electronic structure and optical properties of Si-Ge superlattices. , 1988, Physical review letters.

[3]  Allan,et al.  Band-edge deformation potentials in a tight-binding framework. , 1988, Physical review. B, Condensed matter.

[4]  Wood,et al.  Structural and electronic properties of epitaxial thin-layer SinGen superlattices. , 1988, Physical review. B, Condensed matter.

[5]  Morrison,et al.  Electronic and optical properties of ultrathin Si/Ge (001) superlattices. , 1988, Physical review. B, Condensed matter.

[6]  M. Schlüter,et al.  Theory of optical transitions in Si/Ge(001) strained-layer superlattices. , 1987, Physical review. B, Condensed matter.

[7]  Ni,et al.  New method to study band offsets applied to strained Si/Si1-xGex(100) heterojunction interfaces. , 1987, Physical review. B, Condensed matter.

[8]  Wood,et al.  New optical transitions in strained Si-Ge superlattices. , 1987, Physical review. B, Condensed matter.

[9]  Brey,et al.  New optical transitions in Si-Ge strained superlattices. , 1987, Physical review letters.

[10]  Davidson,et al.  Strain in ultrathin epitaxial films of Ge/Si(100) measured by ion scattering and channeling. , 1987, Physical review letters.

[11]  Morrison,et al.  Strain-induced confinement in Si0.75Ge0.25 (Si/Si0.5Ge0.5) (001) superlattice systems. , 1987, Physical review. B, Condensed matter.

[12]  L. Feldman,et al.  Structure and optical properties of Ge‐Si ordered superlattices , 1987 .

[13]  Pearsall,et al.  Structurally induced optical transitions in Ge-Si superlattices. , 1987, Physical review letters.

[14]  Martin,et al.  Theoretical calculations of heterojunction discontinuities in the Si/Ge system. , 1986, Physical review. B, Condensed matter.

[15]  R. People,et al.  Physics and applications of Ge x Si 1-x /Si strained-layer heterostructures , 1986 .

[16]  L. Feldman,et al.  Ge‐Si layered structures: Artificial crystals and complex cell ordered superlattices , 1986 .

[17]  J. Tersoff,et al.  Tight‐binding theory of heterojunction band lineups and interface dipoles , 1986 .

[18]  H. Kibbel,et al.  The n-channel SiGe/Si modulation-doped field-effect transistor , 1986, IEEE Transactions on Electron Devices.

[19]  T. Pearsall,et al.  Enhancement- and depletion-mode p-channel GexSi1-xmodulation-doped FET's , 1986, IEEE Electron Device Letters.

[20]  M. Jaroš,et al.  Strain-induced electron states in Si0.75Ge0.25(Si/Si0.5Ge0.5)(001) superlattices , 1986 .

[21]  R. People,et al.  Band alignments of coherently strained GexSi1−x/Si heterostructures on 〈001〉 GeySi1−y substrates , 1986 .

[22]  S. Luryi,et al.  Waveguide infrared photodetectors on a silicon chip , 1986, IEEE Electron Device Letters.

[23]  John C. Bean,et al.  Measurement of the band gap of GexSi1−x/Si strained‐layer heterostructures , 1985 .

[24]  Wolf,et al.  Strain-induced two-dimensional electron gas in selectively doped Si/SixGe1-x superlattices. , 1985, Physical review letters.

[25]  L. Brey,et al.  Scaling of the Hamiltonian and momentum in semiconductors , 1984 .

[26]  J. Tersoff Schottky Barrier Heights and the Continuum of Gap States , 1984 .

[27]  M. Cardona,et al.  Absolute Hydrostatic Deformation Potentials of Tetrahedral Semiconductors , 1982 .

[28]  G. C. Osbourn,et al.  Strained-layer superlattices from lattice mismatched materials , 1982 .

[29]  W. Harrison,et al.  Elementary prediction of linear combination of atomic orbitals matrix elements , 1979 .

[30]  D. Chadi,et al.  Localized-orbital description of wave functions and energy bands in semiconductors , 1977 .

[31]  J. W. Matthews,et al.  Almost perfect epitaxial multilayers , 1977 .

[32]  E. Louis,et al.  The metal-semiconductor interface: Si (111) and zincblende (110) junctions , 1977 .

[33]  James R. Chelikowsky,et al.  Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors , 1976 .

[34]  J. C. Slater,et al.  Simplified LCAO Method for the Periodic Potential Problem , 1954 .

[35]  F. Bechstedt,et al.  Electronic structure of strained layer SiGexSi1−x superlattices from tight binding theory , 1988 .

[36]  G. Abstreiter,et al.  Optical and Electronic Properties of Si/SiGe Superlattices , 1986 .

[37]  G. E. Pikus,et al.  Symmetry and strain-induced effects in semiconductors , 1974 .