Dynamical Constraints on the HR 8799 Planets with GPI
暂无分享,去创建一个
Dmitry Savransky | Vanessa P. Bailey | Fredrik T. Rantakyrö | Lisa Poyneer | Rene Doyon | James E. Larkin | S. Mark Ammons | Remi Soummer | Bruce Macintosh | James R. Graham | Laurent Pueyo | J. Kent Wallace | Eric L. Nielsen | Stephen J. Goodsell | Jérôme Maire | Patrick Ingraham | Inseok Song | Pascale Hibon | Gaspard Duchêne | Katherine B. Follette | Jason J. Wang | Anand Sivaramakrishnan | Paul Kalas | David Palmer | Jean-Baptiste Ruffio | Christian Marois | Kimberly Ward-Duong | Travis Barman | Eugene Chiang | Alexandra Z. Greenbaum | Marshall Perrin | Pauline Arriaga | Robert J. De Rosa | Maxwell A. Millar-Blanchaer | Julien Rameau | Franck Marchis | Adam C. Schneider | Abhijith Rajan | Jennifer Patience | Joanna Bulger | Li-Wei Hung | Benjamin L. Gerard | Rebecca Oppenheimer | Jeffrey Chilcote | Michael P. Fitzgerald | Quinn Konopacky | Sloane Wiktorowicz | Mark S. Marley | Tara Cotten | Thomas M. Esposito | Schuyler Wolff | Rebekah Dawson | R. Soummer | D. Savransky | L. Pueyo | B. Macintosh | C. Marois | L. Poyneer | J. Wallace | E. Nielsen | J. Graham | M. Perrin | A. Sivaramakrishnan | T. Barman | Q. Konopacky | M. Marley | R. Doyon | A. Rajan | J. Larkin | D. Palmer | P. Kalas | I. Song | J. Patience | D. Fabrycky | V. Bailey | S. Ammons | P. Hibon | M. Fitzgerald | M. Millar-Blanchaer | R. D. de Rosa | J. Rameau | P. Arriaga | J. Bulger | E. Chiang | J. Chilcote | R. Dawson | G. Duchêne | T. Esposito | K. Follette | B. Gerard | S. Goodsell | A. Greenbaum | T. Cotten | L. Hung | P. Ingraham | J. Maire | F. Marchis | S. Metchev | R. Oppenheimer | F. Rantakyrö | J. Ruffio | A. Schneider | K. Ward-Duong | S. Wiktorowicz | S. Wolff | R. D. Rosa | Sandrine Thomas | Stanimir Metchev | Daniel Fabrycky | Sandrine Thomas | J. Graham | J. Wallace | D. Palmer | R. J. Rosa | A. Schneider
[1] Hanno Rein,et al. WHFAST: a fast and unbiased implementation of a symplectic Wisdom-Holman integrator for long-term gravitational simulations , 2015, 1506.01084.
[2] U. Exeter,et al. A self-consistent, absolute isochronal age scale for young moving groups in the solar neighbourhood , 2015, 1508.05955.
[3] Vanessa P. Bailey,et al. Automated data processing architecture for the Gemini Planet Imager Exoplanet Survey , 2018, 1801.01902.
[4] Tae-Soo Pyo,et al. A COMBINED SUBARU/VLT/MMT 1–5 μm STUDY OF PLANETS ORBITING HR 8799: IMPLICATIONS FOR ATMOSPHERIC PROPERTIES, MASSES, AND FORMATION , 2011, 1101.1973.
[5] R. Brahm,et al. Resolving the planetesimal belt of HR 8799 with ALMA , 2016, 1603.04853.
[6] C. Marois,et al. Efficient Speckle Noise Attenuation in Faint Companion Imaging , 2000 .
[7] John D. Hunter,et al. Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.
[8] K. Y. L. Su,et al. ACCEPTED FOR PUBLICATION IN APJ. Preprint typeset using LATEX style emulateapj v. 2/19/04 THE DEBRIS DISK AROUND HR 8799 , 2022 .
[9] Mark Clampin,et al. STIS CORONAGRAPHIC IMAGING OF FOMALHAUT: MAIN BELT STRUCTURE AND THE ORBIT OF FOMALHAUT b , 2013, 1305.2222.
[10] R. Stuik,et al. bRing: An observatory dedicated to monitoring the $\beta$ Pictoris b Hill sphere transit , 2017, 1709.01325.
[11] Jan Swevers,et al. Ground-based and airborne instrumentation for astronomy , 2010 .
[12] Observatoire de la Côte d'Azur,et al. Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.
[13] Konstantin Batygin,et al. DISSIPATIVE DIVERGENCE OF RESONANT ORBITS , 2012, 1204.2791.
[14] Andrew Serio,et al. The Gemini Planet Imager: First Light , 2014, 1403.7520.
[15] K. Tsiganis,et al. Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.
[16] E. Ford,et al. A DYNAMICAL ANALYSIS OF THE KEPLER-80 SYSTEM OF FIVE TRANSITING PLANETS , 2016, 1607.07540.
[17] Matthew J. Holman,et al. The Use of Transit Timing to Detect Terrestrial-Mass Extrasolar Planets , 2005, Science.
[18] Gautam Vasisht,et al. ASTROMETRIC CONFIRMATION AND PRELIMINARY ORBITAL PARAMETERS OF THE YOUNG EXOPLANET 51 ERIDANI b WITH THE GEMINI PLANET IMAGER , 2015, 1509.07514.
[19] T. Lohne,et al. A possible architecture of the planetary system HR 8799 , 2009, 0905.4688.
[20] Adam Burrows,et al. SPECTRAL AND PHOTOMETRIC DIAGNOSTICS OF GIANT PLANET FORMATION SCENARIOS , 2011, 1108.5172.
[21] C. Migaszewski,et al. The Orbital Architecture and Debris Disks of the HR 8799 Planetary System , 2018, The Astrophysical Journal Supplement Series.
[22] Joshua N. Winn,et al. RAPID DYNAMICAL CHAOS IN AN EXOPLANETARY SYSTEM , 2012, 1206.4695.
[23] B. Macintosh,et al. Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.
[24] I. McLean,et al. Ground-based and Airborne Instrumentation for Astronomy , 2006 .
[25] Dimitri Mawet,et al. VLT/SPHERE robust astrometry of the HR8799 planets at milliarcsecond-level accuracy - Orbital architecture analysis with PyAstrOFit , 2016, 1610.04014.
[26] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[27] E. Quintana,et al. Plausible Compositions of the Seven TRAPPIST-1 Planets Using Long-term Dynamical Simulations , 2017, 1704.02261.
[28] M. Kenworthy,et al. Characterizing exo-ring systems around fast-rotating stars using the Rossiter–McLaughlin effect , 2017, 1709.00680.
[29] S. Morrison,et al. PLANETARY CHAOTIC ZONE CLEARING: DESTINATIONS AND TIMESCALES , 2014, 1411.1378.
[30] R. Soummer,et al. DETECTION AND CHARACTERIZATION OF EXOPLANETS AND DISKS USING PROJECTIONS ON KARHUNEN–LOÈVE EIGENIMAGES , 2012, 1207.4197.
[31] S. Tremaine,et al. Resonant Capture by Inward-migrating Planets , 2000, astro-ph/0009255.
[32] Jason J. Wang,et al. CONSTRAINTS ON THE ARCHITECTURE OF THE HD 95086 PLANETARY SYSTEM WITH THE GEMINI PLANET IMAGER , 2016, 1604.05139.
[33] Santiago,et al. RESOLVED IMAGING OF THE HR 8799 DEBRIS DISK WITH HERSCHEL , 2013, 1311.2977.
[34] Leslie Saddlemyer,et al. Gemini planet imager observational calibrations V: astrometry and distortion , 2014, Astronomical Telescopes and Instrumentation.
[35] Dmitry Savransky,et al. Gemini Planet Imager observational calibrations XI: pipeline improvements and enhanced calibrations after two years on sky , 2016, Astronomical Telescopes + Instrumentation.
[36] S. Esposito,et al. The LEECH Exoplanet Imaging Survey. Further constraints on the planet architecture of the HR 8799 system (Corrigendum) , 2014, 1412.6989.
[37] Laurent Pueyo,et al. ORBITAL MOTION OF HR 8799 b, c, d USING HUBBLE SPACE TELESCOPE DATA FROM 1998: CONSTRAINTS ON INCLINATION, ECCENTRICITY, AND STABILITY , 2011 .
[38] H. Rein,et al. REBOUND: An open-source multi-purpose N-body code for collisional dynamics , 2011, 1110.4876.
[39] P. H. Hauschildt,et al. Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003 .
[40] Hideki Takami,et al. Ground-based and Airborne Instrumentation for Astronomy III , 2008 .
[41] Ellyn K. Baines,et al. THE CHARA ARRAY ANGULAR DIAMETER OF HR 8799 FAVORS PLANETARY MASSES FOR ITS IMAGED COMPANIONS , 2012, 1210.0556.
[42] R. Argyle,et al. Observing and Measuring Visual Double Stars , 2004 .
[43] Fredrik T. Rantakyrö,et al. Gemini Planet Imager observational calibrations I: Overview of the GPI data reduction pipeline , 2014, Astronomical Telescopes and Instrumentation.
[44] T. A. Lister,et al. Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.
[45] Gautam Vasisht,et al. THE ORBIT AND TRANSIT PROSPECTS FOR β PICTORIS b CONSTRAINED WITH ONE MILLIARCSECOND ASTROMETRY , 2016, 1607.05272.
[46] R. Paul Butler,et al. THE LICK-CARNEGIE EXOPLANET SURVEY: A URANUS-MASS FOURTH PLANET FOR GJ 876 IN AN EXTRASOLAR LAPLACE CONFIGURATION , 2010, 1006.4244.
[47] A. Liddle,et al. Information criteria for astrophysical model selection , 2007, astro-ph/0701113.
[48] A. Boccaletti,et al. The position of β Pictoris b position relative to the debris disk , 2012, 1202.2578.
[50] C. Thalmann,et al. DIRECT DETECTION AND ORBITAL ANALYSIS OF THE EXOPLANETS HR 8799 bcd FROM ARCHIVAL 2005 KECK/NIRC2 DATA , 2012, 1206.0483.
[51] S. Morrison,et al. ORBITAL STABILITY OF MULTI-PLANET SYSTEMS: BEHAVIOR AT HIGH MASSES , 2015, 1604.01037.
[52] Daniel C. Fabrycky,et al. Submitted to ApJ , 1999 .
[53] B. Matthews,et al. Resolved Millimeter Observations of the HR 8799 Debris Disk , 2018, 1803.00054.
[54] Lennart Lindegren,et al. ASTROMETRIC EXOPLANET DETECTION WITH GAIA , 2014, 1411.1173.
[55] Jonathan P. Williams,et al. Protoplanetary Disks and Their Evolution , 2011, 1103.0556.
[56] HIGH-MASS, FOUR-PLANET CONFIGURATIONS FOR HR 8799: CONSTRAINING THE ORBITAL INCLINATION AND AGE OF THE SYSTEM , 2012, 1201.0561.
[57] M. Wyatt,et al. Shaping HR8799’s outer dust belt with an unseen planet , 2018, 1801.06513.
[58] D. Fabrycky,et al. ON THE MISALIGNMENT OF THE DIRECTLY IMAGED PLANET β PICTORIS b WITH THE SYSTEM'S WARPED INNER DISK , 2011, 1111.0297.
[59] R. Dawson,et al. Stability and Occurrence Rate Constraints on the Planetary Sculpting Hypothesis for "Transitional" Disks , 2016, 1605.02074.
[60] S. Metchev,et al. Young Stars & Planets Near the Sun, , 2016 .
[61] B. Macintosh,et al. Angular Differential Imaging: A Powerful High-Contrast Imaging Technique , 2005, astro-ph/0512335.
[62] Jake Vanderplas,et al. The Astropy Project: Building an inclusive, open-science project and status of the v2.0 software , 2018 .
[63] C. Baranec,et al. RECONNAISSANCE OF THE HR 8799 EXOSOLAR SYSTEM. II. ASTROMETRY AND ORBITAL MOTION , 2014, 1409.6388.
[64] R. Galicher,et al. ASTROMETRIC MONITORING OF THE HR 8799 PLANETS: ORBIT CONSTRAINTS FROM SELF-CONSISTENT MEASUREMENTS , 2016, 1604.08157.
[65] Daniel Foreman-Mackey,et al. emcee: The MCMC Hammer , 2012, 1202.3665.
[66] Krzysztof Gozdziewski,et al. Multiple mean motion resonances in the HR 8799 planetary system , 2013, 1308.6462.
[67] A. Johansen,et al. Long-term stability of the HR 8799 planetary system without resonant lock , 2016, 1606.07819.
[68] Constantinos Marios Angelopoulos,et al. DHP Framework: Digital Health Passports Using Blockchain - Use case on international tourism during the COVID-19 pandemic , 2020, ArXiv.
[69] Y. Lithwick,et al. RESONANT REPULSION OF KEPLER PLANET PAIRS , 2012, 1204.2555.
[70] Norman Murray,et al. Convergent Migration Renders TRAPPIST-1 Long-lived , 2017, 1704.02957.
[71] H. Rein,et al. A new paradigm for reproducing and analyzing N-body simulations of planetary systems , 2017, 1701.07423.
[72] Jason J. Wang,et al. β PICTORIS’ INNER DISK IN POLARIZED LIGHT AND NEW ORBITAL PARAMETERS FOR β PICTORIS b , 2015, 1508.04787.
[73] Jonathan R Goodman,et al. Ensemble samplers with affine invariance , 2010 .
[74] E. Chiang,et al. A Signature of Planetary Migration: The Origin of Asymmetric Capture in the 2:1 Resonance , 2004, astro-ph/0410086.
[75] Jonathan P. Williams,et al. RESOLVED SUBMILLIMETER OBSERVATIONS OF THE HR 8799 AND HD 107146 DEBRIS DISKS , 2011, 1107.3153.
[76] M. Marley,et al. On the Luminosity of Young Jupiters , 2006, astro-ph/0609739.
[77] Fredrik T. Rantakyrö,et al. Gemini planet imager observational calibrations VIII: characterization and role of satellite spots , 2014, Astronomical Telescopes and Instrumentation.
[78] B. Macintosh,et al. Images of a fourth planet orbiting HR 8799 , 2010, Nature.
[79] R. Paul Butler,et al. A Pair of Resonant Planets Orbiting GJ 876 , 2001 .
[80] L. Busoni,et al. LBT observations of the HR 8799 planetary system - First detection of HR 8799e in H band , 2012, 1203.2735.
[81] Heidelberg,et al. Constraining the initial entropy of directly detected exoplanets , 2013, 1302.1517.
[82] Inseok Song,et al. THE TUCANA/HOROLOGIUM, COLUMBA, AB DORADUS, AND ARGUS ASSOCIATIONS: NEW MEMBERS AND DUSTY DEBRIS DISKS , 2011, 1104.0284.
[83] D. Fantinel,et al. First light of the VLT planet finder SPHERE - III. New spectrophotometry and astrometry of the HR 8799 exoplanetary system , 2015, 1511.04083.
[84] Dmitry Savransky,et al. GPI Spectra of HR 8799 c, d, and e from 1.5 to 2.4 μm with KLIP Forward Modeling , 2018, 1804.07774.