Dynamical Constraints on the HR 8799 Planets with GPI

The HR 8799 system uniquely harbors four young super-Jupiters whose orbits can provide insights into the system's dynamical history and constrain the masses of the planets themselves. Using the Gemini Planet Imager (GPI), we obtained down to one milliarcsecond precision on the astrometry of these planets. We assessed four-planet orbit models with different levels of constraints and found that assuming the planets are near 1:2:4:8 period commensurabilities, or are coplanar, does not worsen the fit. We added the prior that the planets must have been stable for the age of the system (40 Myr) by running orbit configurations from our posteriors through $N$-body simulations and varying the masses of the planets. We found that only assuming the planets are both coplanar and near 1:2:4:8 period commensurabilities produces dynamically stable orbits in large quantities. Our posterior of stable coplanar orbits tightly constrains the planets' orbits, and we discuss implications for the outermost planet b shaping the debris disk. A four-planet resonance lock is not necessary for stability up to now. However, planet pairs d and e, and c and d, are each likely locked in two-body resonances for stability if their component masses are above $6~M_{\rm{Jup}}$ and $7~M_{\rm{Jup}}$, respectively. Combining the dynamical and luminosity constraints on the masses using hot-start evolutionary models and a system age of $42 \pm 5$~Myr, we found the mass of planet b to be $5.8 \pm 0.5~M_{\rm{Jup}}$, and the masses of planets c, d, and e to be $7.2_{-0.7}^{+0.6}~M_{\rm{Jup}}$ each.

Dmitry Savransky | Vanessa P. Bailey | Fredrik T. Rantakyrö | Lisa Poyneer | Rene Doyon | James E. Larkin | S. Mark Ammons | Remi Soummer | Bruce Macintosh | James R. Graham | Laurent Pueyo | J. Kent Wallace | Eric L. Nielsen | Stephen J. Goodsell | Jérôme Maire | Patrick Ingraham | Inseok Song | Pascale Hibon | Gaspard Duchêne | Katherine B. Follette | Jason J. Wang | Anand Sivaramakrishnan | Paul Kalas | David Palmer | Jean-Baptiste Ruffio | Christian Marois | Kimberly Ward-Duong | Travis Barman | Eugene Chiang | Alexandra Z. Greenbaum | Marshall Perrin | Pauline Arriaga | Robert J. De Rosa | Maxwell A. Millar-Blanchaer | Julien Rameau | Franck Marchis | Adam C. Schneider | Abhijith Rajan | Jennifer Patience | Joanna Bulger | Li-Wei Hung | Benjamin L. Gerard | Rebecca Oppenheimer | Jeffrey Chilcote | Michael P. Fitzgerald | Quinn Konopacky | Sloane Wiktorowicz | Mark S. Marley | Tara Cotten | Thomas M. Esposito | Schuyler Wolff | Rebekah Dawson | R. Soummer | D. Savransky | L. Pueyo | B. Macintosh | C. Marois | L. Poyneer | J. Wallace | E. Nielsen | J. Graham | M. Perrin | A. Sivaramakrishnan | T. Barman | Q. Konopacky | M. Marley | R. Doyon | A. Rajan | J. Larkin | D. Palmer | P. Kalas | I. Song | J. Patience | D. Fabrycky | V. Bailey | S. Ammons | P. Hibon | M. Fitzgerald | M. Millar-Blanchaer | R. D. de Rosa | J. Rameau | P. Arriaga | J. Bulger | E. Chiang | J. Chilcote | R. Dawson | G. Duchêne | T. Esposito | K. Follette | B. Gerard | S. Goodsell | A. Greenbaum | T. Cotten | L. Hung | P. Ingraham | J. Maire | F. Marchis | S. Metchev | R. Oppenheimer | F. Rantakyrö | J. Ruffio | A. Schneider | K. Ward-Duong | S. Wiktorowicz | S. Wolff | R. D. Rosa | Sandrine Thomas | Stanimir Metchev | Daniel Fabrycky | Sandrine Thomas | J. Graham | J. Wallace | D. Palmer | R. J. Rosa | A. Schneider

[1]  Hanno Rein,et al.  WHFAST: a fast and unbiased implementation of a symplectic Wisdom-Holman integrator for long-term gravitational simulations , 2015, 1506.01084.

[2]  U. Exeter,et al.  A self-consistent, absolute isochronal age scale for young moving groups in the solar neighbourhood , 2015, 1508.05955.

[3]  Vanessa P. Bailey,et al.  Automated data processing architecture for the Gemini Planet Imager Exoplanet Survey , 2018, 1801.01902.

[4]  Tae-Soo Pyo,et al.  A COMBINED SUBARU/VLT/MMT 1–5 μm STUDY OF PLANETS ORBITING HR 8799: IMPLICATIONS FOR ATMOSPHERIC PROPERTIES, MASSES, AND FORMATION , 2011, 1101.1973.

[5]  R. Brahm,et al.  Resolving the planetesimal belt of HR 8799 with ALMA , 2016, 1603.04853.

[6]  C. Marois,et al.  Efficient Speckle Noise Attenuation in Faint Companion Imaging , 2000 .

[7]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[8]  K. Y. L. Su,et al.  ACCEPTED FOR PUBLICATION IN APJ. Preprint typeset using LATEX style emulateapj v. 2/19/04 THE DEBRIS DISK AROUND HR 8799 , 2022 .

[9]  Mark Clampin,et al.  STIS CORONAGRAPHIC IMAGING OF FOMALHAUT: MAIN BELT STRUCTURE AND THE ORBIT OF FOMALHAUT b , 2013, 1305.2222.

[10]  R. Stuik,et al.  bRing: An observatory dedicated to monitoring the $\beta$ Pictoris b Hill sphere transit , 2017, 1709.01325.

[11]  Jan Swevers,et al.  Ground-based and airborne instrumentation for astronomy , 2010 .

[12]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[13]  Konstantin Batygin,et al.  DISSIPATIVE DIVERGENCE OF RESONANT ORBITS , 2012, 1204.2791.

[14]  Andrew Serio,et al.  The Gemini Planet Imager: First Light , 2014, 1403.7520.

[15]  K. Tsiganis,et al.  Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.

[16]  E. Ford,et al.  A DYNAMICAL ANALYSIS OF THE KEPLER-80 SYSTEM OF FIVE TRANSITING PLANETS , 2016, 1607.07540.

[17]  Matthew J. Holman,et al.  The Use of Transit Timing to Detect Terrestrial-Mass Extrasolar Planets , 2005, Science.

[18]  Gautam Vasisht,et al.  ASTROMETRIC CONFIRMATION AND PRELIMINARY ORBITAL PARAMETERS OF THE YOUNG EXOPLANET 51 ERIDANI b WITH THE GEMINI PLANET IMAGER , 2015, 1509.07514.

[19]  T. Lohne,et al.  A possible architecture of the planetary system HR 8799 , 2009, 0905.4688.

[20]  Adam Burrows,et al.  SPECTRAL AND PHOTOMETRIC DIAGNOSTICS OF GIANT PLANET FORMATION SCENARIOS , 2011, 1108.5172.

[21]  C. Migaszewski,et al.  The Orbital Architecture and Debris Disks of the HR 8799 Planetary System , 2018, The Astrophysical Journal Supplement Series.

[22]  Joshua N. Winn,et al.  RAPID DYNAMICAL CHAOS IN AN EXOPLANETARY SYSTEM , 2012, 1206.4695.

[23]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[24]  I. McLean,et al.  Ground-based and Airborne Instrumentation for Astronomy , 2006 .

[25]  Dimitri Mawet,et al.  VLT/SPHERE robust astrometry of the HR8799 planets at milliarcsecond-level accuracy - Orbital architecture analysis with PyAstrOFit , 2016, 1610.04014.

[26]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[27]  E. Quintana,et al.  Plausible Compositions of the Seven TRAPPIST-1 Planets Using Long-term Dynamical Simulations , 2017, 1704.02261.

[28]  M. Kenworthy,et al.  Characterizing exo-ring systems around fast-rotating stars using the Rossiter–McLaughlin effect , 2017, 1709.00680.

[29]  S. Morrison,et al.  PLANETARY CHAOTIC ZONE CLEARING: DESTINATIONS AND TIMESCALES , 2014, 1411.1378.

[30]  R. Soummer,et al.  DETECTION AND CHARACTERIZATION OF EXOPLANETS AND DISKS USING PROJECTIONS ON KARHUNEN–LOÈVE EIGENIMAGES , 2012, 1207.4197.

[31]  S. Tremaine,et al.  Resonant Capture by Inward-migrating Planets , 2000, astro-ph/0009255.

[32]  Jason J. Wang,et al.  CONSTRAINTS ON THE ARCHITECTURE OF THE HD 95086 PLANETARY SYSTEM WITH THE GEMINI PLANET IMAGER , 2016, 1604.05139.

[33]  Santiago,et al.  RESOLVED IMAGING OF THE HR 8799 DEBRIS DISK WITH HERSCHEL , 2013, 1311.2977.

[34]  Leslie Saddlemyer,et al.  Gemini planet imager observational calibrations V: astrometry and distortion , 2014, Astronomical Telescopes and Instrumentation.

[35]  Dmitry Savransky,et al.  Gemini Planet Imager observational calibrations XI: pipeline improvements and enhanced calibrations after two years on sky , 2016, Astronomical Telescopes + Instrumentation.

[36]  S. Esposito,et al.  The LEECH Exoplanet Imaging Survey. Further constraints on the planet architecture of the HR 8799 system (Corrigendum) , 2014, 1412.6989.

[37]  Laurent Pueyo,et al.  ORBITAL MOTION OF HR 8799 b, c, d USING HUBBLE SPACE TELESCOPE DATA FROM 1998: CONSTRAINTS ON INCLINATION, ECCENTRICITY, AND STABILITY , 2011 .

[38]  H. Rein,et al.  REBOUND: An open-source multi-purpose N-body code for collisional dynamics , 2011, 1110.4876.

[39]  P. H. Hauschildt,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003 .

[40]  Hideki Takami,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2008 .

[41]  Ellyn K. Baines,et al.  THE CHARA ARRAY ANGULAR DIAMETER OF HR 8799 FAVORS PLANETARY MASSES FOR ITS IMAGED COMPANIONS , 2012, 1210.0556.

[42]  R. Argyle,et al.  Observing and Measuring Visual Double Stars , 2004 .

[43]  Fredrik T. Rantakyrö,et al.  Gemini Planet Imager observational calibrations I: Overview of the GPI data reduction pipeline , 2014, Astronomical Telescopes and Instrumentation.

[44]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[45]  Gautam Vasisht,et al.  THE ORBIT AND TRANSIT PROSPECTS FOR β PICTORIS b CONSTRAINED WITH ONE MILLIARCSECOND ASTROMETRY , 2016, 1607.05272.

[46]  R. Paul Butler,et al.  THE LICK-CARNEGIE EXOPLANET SURVEY: A URANUS-MASS FOURTH PLANET FOR GJ 876 IN AN EXTRASOLAR LAPLACE CONFIGURATION , 2010, 1006.4244.

[47]  A. Liddle,et al.  Information criteria for astrophysical model selection , 2007, astro-ph/0701113.

[48]  A. Boccaletti,et al.  The position of β Pictoris b position relative to the debris disk , 2012, 1202.2578.

[50]  C. Thalmann,et al.  DIRECT DETECTION AND ORBITAL ANALYSIS OF THE EXOPLANETS HR 8799 bcd FROM ARCHIVAL 2005 KECK/NIRC2 DATA , 2012, 1206.0483.

[51]  S. Morrison,et al.  ORBITAL STABILITY OF MULTI-PLANET SYSTEMS: BEHAVIOR AT HIGH MASSES , 2015, 1604.01037.

[52]  Daniel C. Fabrycky,et al.  Submitted to ApJ , 1999 .

[53]  B. Matthews,et al.  Resolved Millimeter Observations of the HR 8799 Debris Disk , 2018, 1803.00054.

[54]  Lennart Lindegren,et al.  ASTROMETRIC EXOPLANET DETECTION WITH GAIA , 2014, 1411.1173.

[55]  Jonathan P. Williams,et al.  Protoplanetary Disks and Their Evolution , 2011, 1103.0556.

[56]  HIGH-MASS, FOUR-PLANET CONFIGURATIONS FOR HR 8799: CONSTRAINING THE ORBITAL INCLINATION AND AGE OF THE SYSTEM , 2012, 1201.0561.

[57]  M. Wyatt,et al.  Shaping HR8799’s outer dust belt with an unseen planet , 2018, 1801.06513.

[58]  D. Fabrycky,et al.  ON THE MISALIGNMENT OF THE DIRECTLY IMAGED PLANET β PICTORIS b WITH THE SYSTEM'S WARPED INNER DISK , 2011, 1111.0297.

[59]  R. Dawson,et al.  Stability and Occurrence Rate Constraints on the Planetary Sculpting Hypothesis for "Transitional" Disks , 2016, 1605.02074.

[60]  S. Metchev,et al.  Young Stars & Planets Near the Sun, , 2016 .

[61]  B. Macintosh,et al.  Angular Differential Imaging: A Powerful High-Contrast Imaging Technique , 2005, astro-ph/0512335.

[62]  Jake Vanderplas,et al.  The Astropy Project: Building an inclusive, open-science project and status of the v2.0 software , 2018 .

[63]  C. Baranec,et al.  RECONNAISSANCE OF THE HR 8799 EXOSOLAR SYSTEM. II. ASTROMETRY AND ORBITAL MOTION , 2014, 1409.6388.

[64]  R. Galicher,et al.  ASTROMETRIC MONITORING OF THE HR 8799 PLANETS: ORBIT CONSTRAINTS FROM SELF-CONSISTENT MEASUREMENTS , 2016, 1604.08157.

[65]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[66]  Krzysztof Gozdziewski,et al.  Multiple mean motion resonances in the HR 8799 planetary system , 2013, 1308.6462.

[67]  A. Johansen,et al.  Long-term stability of the HR 8799 planetary system without resonant lock , 2016, 1606.07819.

[68]  Constantinos Marios Angelopoulos,et al.  DHP Framework: Digital Health Passports Using Blockchain - Use case on international tourism during the COVID-19 pandemic , 2020, ArXiv.

[69]  Y. Lithwick,et al.  RESONANT REPULSION OF KEPLER PLANET PAIRS , 2012, 1204.2555.

[70]  Norman Murray,et al.  Convergent Migration Renders TRAPPIST-1 Long-lived , 2017, 1704.02957.

[71]  H. Rein,et al.  A new paradigm for reproducing and analyzing N-body simulations of planetary systems , 2017, 1701.07423.

[72]  Jason J. Wang,et al.  β PICTORIS’ INNER DISK IN POLARIZED LIGHT AND NEW ORBITAL PARAMETERS FOR β PICTORIS b , 2015, 1508.04787.

[73]  Jonathan R Goodman,et al.  Ensemble samplers with affine invariance , 2010 .

[74]  E. Chiang,et al.  A Signature of Planetary Migration: The Origin of Asymmetric Capture in the 2:1 Resonance , 2004, astro-ph/0410086.

[75]  Jonathan P. Williams,et al.  RESOLVED SUBMILLIMETER OBSERVATIONS OF THE HR 8799 AND HD 107146 DEBRIS DISKS , 2011, 1107.3153.

[76]  M. Marley,et al.  On the Luminosity of Young Jupiters , 2006, astro-ph/0609739.

[77]  Fredrik T. Rantakyrö,et al.  Gemini planet imager observational calibrations VIII: characterization and role of satellite spots , 2014, Astronomical Telescopes and Instrumentation.

[78]  B. Macintosh,et al.  Images of a fourth planet orbiting HR 8799 , 2010, Nature.

[79]  R. Paul Butler,et al.  A Pair of Resonant Planets Orbiting GJ 876 , 2001 .

[80]  L. Busoni,et al.  LBT observations of the HR 8799 planetary system - First detection of HR 8799e in H band , 2012, 1203.2735.

[81]  Heidelberg,et al.  Constraining the initial entropy of directly detected exoplanets , 2013, 1302.1517.

[82]  Inseok Song,et al.  THE TUCANA/HOROLOGIUM, COLUMBA, AB DORADUS, AND ARGUS ASSOCIATIONS: NEW MEMBERS AND DUSTY DEBRIS DISKS , 2011, 1104.0284.

[83]  D. Fantinel,et al.  First light of the VLT planet finder SPHERE - III. New spectrophotometry and astrometry of the HR 8799 exoplanetary system , 2015, 1511.04083.

[84]  Dmitry Savransky,et al.  GPI Spectra of HR 8799 c, d, and e from 1.5 to 2.4 μm with KLIP Forward Modeling , 2018, 1804.07774.