Computer science and the fine structure of Borel sets
暂无分享,去创建一个
[1] Wolfgang Thomas,et al. Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.
[2] Bruno Courcelle,et al. The Monadic Second-Order Logic of Graphs IX: Machines and their Behaviours , 1995, Theor. Comput. Sci..
[3] Jean-Pierre Ressayre. Formal Languages Defined by the Underlying Structure of their Words , 1988, J. Symb. Log..
[4] Donald A. Martin,et al. A Purely Inductive Proof of Borel Determinacy , 1985 .
[5] A. Louveau,et al. Some results in the wadge hierarchy of borel sets , 1983 .
[6] Jean Saint Raymond,et al. Les propriétés de réduction et de norme pour les classes de Boréliens , 1988 .
[7] Jacques Duparc,et al. Wadge hierarchy and Veblen hierarchy Part I: Borel sets of finite rank , 2001, Journal of Symbolic Logic.
[8] Olivier Finkel. Locally finite languages , 2001, Theor. Comput. Sci..
[9] William W. Wadge,et al. Degrees of complexity of subsets of the baire space , 1972 .
[10] Jacqueline Vauzeilles,et al. Functors and Ordinal Notations. II: A Functorial Construction of the Bachmann Hierarchy , 1984, J. Symb. Log..
[11] O. Finkel. Langages de Büchi et ω-langages locaux , 1989 .
[12] Klaus W. Wagner,et al. On omega-Regular Sets , 1979, Inf. Control..
[13] Jacques Duparc. La forme normale des Boréliens de rang fini , 1995 .
[14] Jacqueline Vauzeilles,et al. Functors and ordinal notations. I: A functorial construction of the veblen hierarchy , 1984, Journal of Symbolic Logic.
[15] Bruno Courcelle,et al. The Monadic Second-Order Logic of Graphs X: Linear Orderings , 1996, Theor. Comput. Sci..
[16] Alain Louveau,et al. The strength of Borel wadge determinacy , 1988 .
[17] O. Veblen. Continuous increasing functions of finite and transfinite ordinals , 1908 .
[18] Igor Walukiewicz,et al. Pushdown Processes: Games and Model-Checking , 1996, Inf. Comput..