Computer science and the fine structure of Borel sets

(I) Wadge defined a natural refinement of the Borel hierarchy, now called the Wadge hierarchy WH. The fundamental properties of WH follow from the results of Kuratowski, Martin, Wadge and Louveau. We give a transparent restatement and proof of Wadge's main theorem. Our method is new for it yields a wide and unexpected extension: from Borel sets of reals to a class of natural but non Borel sets of infinite sequences. Wadge's theorem is quite ineffective and our generalization clearly worsens in this respect. Yet paradoxically our method is appropriate to effectivize this whole theory in the context discussed below. (II) Wagner defined on Buchi automata (accepting words of length ω) a hierarchy and proved for it an effective analog of Wadge's results. We extend Wagner's results to more general kinds of automata: counters, push-down automata and Buchi automata reading transfinite words. The notions and methods developed in (I) are quite useful for this extension, and we start to use them in order to look for extensions of the fundamental effective determinacy results of Buchi–Landweber, Rabin; and of Courcelle–Walukiewicz.

[1]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[2]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs IX: Machines and their Behaviours , 1995, Theor. Comput. Sci..

[3]  Jean-Pierre Ressayre Formal Languages Defined by the Underlying Structure of their Words , 1988, J. Symb. Log..

[4]  Donald A. Martin,et al.  A Purely Inductive Proof of Borel Determinacy , 1985 .

[5]  A. Louveau,et al.  Some results in the wadge hierarchy of borel sets , 1983 .

[6]  Jean Saint Raymond,et al.  Les propriétés de réduction et de norme pour les classes de Boréliens , 1988 .

[7]  Jacques Duparc,et al.  Wadge hierarchy and Veblen hierarchy Part I: Borel sets of finite rank , 2001, Journal of Symbolic Logic.

[8]  Olivier Finkel Locally finite languages , 2001, Theor. Comput. Sci..

[9]  William W. Wadge,et al.  Degrees of complexity of subsets of the baire space , 1972 .

[10]  Jacqueline Vauzeilles,et al.  Functors and Ordinal Notations. II: A Functorial Construction of the Bachmann Hierarchy , 1984, J. Symb. Log..

[11]  O. Finkel Langages de Büchi et ω-langages locaux , 1989 .

[12]  Klaus W. Wagner,et al.  On omega-Regular Sets , 1979, Inf. Control..

[13]  Jacques Duparc La forme normale des Boréliens de rang fini , 1995 .

[14]  Jacqueline Vauzeilles,et al.  Functors and ordinal notations. I: A functorial construction of the veblen hierarchy , 1984, Journal of Symbolic Logic.

[15]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs X: Linear Orderings , 1996, Theor. Comput. Sci..

[16]  Alain Louveau,et al.  The strength of Borel wadge determinacy , 1988 .

[17]  O. Veblen Continuous increasing functions of finite and transfinite ordinals , 1908 .

[18]  Igor Walukiewicz,et al.  Pushdown Processes: Games and Model-Checking , 1996, Inf. Comput..