The synchronization of shared mobility flows in urban environments

Avec l’augmentation progressive de la population dans les grandes villes, comme Paris, nous prevoyons d’ici 2050 une augmentation de 50% du trafic routier. En considerant les embouteillages et la pollution que cette augmentation va generer, on voit clairement la necessite de nouveaux systeme de mobilite plus durables, comme le covoiturage, ou plus generalement toute la mobilite partagee. En parlant de mobilite partagee, ce n’est pas seulement le partage de trajets de personnes qui ont le meme itineraire au meme temps, elle inclut aussi les marchandises.Cette these aborde le defi de la synchronisation des flux de passagers et de marchandises dans les systemes de mobilite urbaine et elle vis a developper des methodes d’optimisation pour que cette synchronisation dans la mobilite partagee soit faisable. Plus precisement, elle aborde les questions de recherche suivantes:*Q1: Quelles sont les variantes des systemes de mobilite partagee et comment les optimiser?*Q2: Comment synchroniser les deplacements de personnes et quels gains cette synchronisation peut-elle generer?*Q3: Comment combiner les flux de passagers et de fret et quels sont les avantages attendus?*Q4: Quels sont les effets de l'incertitude sur la planification et l'exploitation de systemes de mobilite partagee?Dans un premier temps, nous etudions les differentes variantes des systemes de mobilite partagee et nous les classifions en fonction de leurs modeles, caracteristiques, approches de resolution et contexte d'application. En se basant sur cette revue de litterature, nous identifions deux problemes de mobilite partages, que nous considerons en details dans cette these et nous developpons des methodes d'optimisation pour les resoudre.Pour synchroniser les flux de passagers, nous etudions un modele de covoiturage en utilisant les vehicules autonomes, personnels et partages, et des points de rencontre ou la synchronisation entre passagers peut avoir lieu. Pour cela, une methode heuristique en deux phases est proposee et une etude de cas sur la ville de New York est presentee.Ensuite, nous developpons un modele d’optimisation qui combine les flux de passagers et de marchandises dans une region urbaine. Le but de ce modele est d’utiliser les capacites disponibles sur une ligne de transport fixe pour transporter les passagers et des robots transportant des petits colis a leurs destinations finales en considerant que la demande de passagers est stochastique. Les resultats obtenus montrent que les solutions proposees par ces deux modeles peuvent conduire a une meilleure utilisation des systemes de transport dans les regions urbaines.

[1]  Jesús González-Feliu,et al.  Vehicle routing problems for city logistics , 2017, EURO J. Transp. Logist..

[2]  Christian Artigues,et al.  Optimization of occupancy rate in dial-a-ride problems via linear fractional column generation , 2011, Comput. Oper. Res..

[3]  H. M. Zhang,et al.  The morning commute problem with ridesharing and dynamic parking charges , 2017 .

[4]  Jiaqi Ma,et al.  Designing an Optimal Autonomous Vehicle Sharing and Reservation System: A Linear Programming Approach , 2017 .

[5]  Yuchuan Du,et al.  Optimal design of autonomous vehicle zones in transportation networks , 2017 .

[6]  Roberto Baldacci,et al.  An Exact Method for the Car Pooling Problem Based on Lagrangean Column Generation , 2004, Oper. Res..

[7]  Martin W. P. Savelsbergh,et al.  Optimization for dynamic ride-sharing: A review , 2012, Eur. J. Oper. Res..

[8]  Daniele Vigo,et al.  Models and algorithms for reliability-oriented Dial-a-Ride with autonomous electric vehicles , 2017, Eur. J. Oper. Res..

[9]  Teodor Gabriel Crainic,et al.  Physical Internet Enabled Hyperconnected City Logistics , 2016 .

[10]  Joschka Bischoff,et al.  Autonomous Taxicabs in Berlin – A Spatiotemporal Analysis of Service Performance , 2016 .

[11]  Kay W. Axhausen,et al.  Autonomous vehicles: The next jump in accessibilities? , 2017 .

[12]  Andrew Lim,et al.  Pickup and Delivery Service with Manpower Planning in Hong Kong Public Hospitals , 2017, Transp. Sci..

[13]  Vittorio Maniezzo,et al.  A distributed geographic information system for the daily car pooling problem , 2004, Comput. Oper. Res..

[14]  Pedro M. d'Orey,et al.  Can ride-sharing become attractive? A case study of taxi-sharing employing a simulation modelling approach , 2015 .

[15]  Danielle Attias The Automobile Revolution , 2017 .

[16]  Carlos Carmona,et al.  Analysis and Operational Challenges of Dynamic Ride Sharing Demand Responsive Transportation Models , 2017 .

[17]  Eduardo C. Xavier,et al.  Taxi and Ride Sharing: A Dynamic Dial-a-Ride Problem with Money as an Incentive , 2015, Expert Syst. Appl..

[18]  Yuanyuan Li,et al.  Pricing scheme design of ridesharing program in morning commute problem , 2017 .

[19]  Michal Maciejewski,et al.  Large-scale microscopic simulation of taxi services. Berlin and Barcelona case studies , 2016, J. Ambient Intell. Humaniz. Comput..

[20]  Yu Zheng,et al.  Effective and Efficient: Large-Scale Dynamic City Express , 2016, IEEE Transactions on Knowledge and Data Engineering.

[21]  Xing Wang,et al.  Stable Matching for Dynamic Ride-Sharing Systems , 2014, Transp. Sci..

[22]  Fabien Lehuédé,et al.  A multi-criteria large neighbourhood search for the transportation of disabled people , 2014, J. Oper. Res. Soc..

[23]  Gilbert Laporte,et al.  Vehicle routing with backhauls: Review and research perspectives , 2018, Comput. Oper. Res..

[24]  Yu Zheng,et al.  Real-Time City-Scale Taxi Ridesharing , 2015, IEEE Transactions on Knowledge and Data Engineering.

[25]  Hua Cai,et al.  Dynamic ride sharing using traditional taxis and shared autonomous taxis: A case study of NYC , 2018, Transportation Research Part C: Emerging Technologies.

[26]  Verena Schmid,et al.  Hybrid column generation and large neighborhood search for the dial-a-ride problem , 2013, Comput. Oper. Res..

[27]  Fritz Busch,et al.  Framework for Automated Taxi Operation: The Family Model , 2017 .

[28]  S. Boyles,et al.  Urban consolidation solutions for parcel delivery considering location, fleet and route choice , 2017 .

[29]  Leo Kroon,et al.  Crowdsourced Delivery - a Pickup and Delivery Problem with Ad-hoc Drivers , 2016 .

[30]  Yi-Ming Wei,et al.  Environmental benefits from ridesharing: A case of Beijing , 2017 .

[31]  Yu Liu,et al.  The promises of big data and small data for travel behavior (aka human mobility) analysis , 2016, Transportation research. Part C, Emerging technologies.

[32]  Thibaut Vidal,et al.  Routing a mix of conventional, plug-in hybrid, and electric vehicles , 2018, Eur. J. Oper. Res..

[33]  Jacques Leonardi,et al.  The Role of Urban Consolidation Centres in Sustainable Freight Transport , 2012 .

[34]  Takao Asano,et al.  The dial-a-ride problem with fairness , 2018 .

[35]  Stephen D. Boyles,et al.  A general framework for modeling shared autonomous vehicles with dynamic network-loading and dynamic ride-sharing application , 2017, Comput. Environ. Urban Syst..

[36]  Piotr Marek Smolnicki,et al.  Driverless Mobility: The Impact on Metropolitan Spatial Structures , 2016 .

[37]  Michel Gendreau,et al.  An adaptive large neighborhood search for the two-echelon multiple-trip vehicle routing problem with satellite synchronization , 2016, Eur. J. Oper. Res..

[38]  Gilbert Laporte,et al.  The dial-a-ride problem: models and algorithms , 2006, Ann. Oper. Res..

[39]  Elias Boutros Khalil,et al.  The impact of private autonomous vehicles on vehicle ownership and unoccupied VMT generation , 2018 .

[40]  Hajo A. Reijers,et al.  An adaptive large neighborhood search heuristic for the share-a-ride problem , 2016, Comput. Oper. Res..

[41]  L. Martínez,et al.  An Agent-based model to assess the impacts of introducing a shared-taxi system in Lisbon ( Portugal ) , 2012 .

[42]  Gilbert Laporte,et al.  Combining multicriteria analysis and tabu search for dial-a-ride problems , 2013 .

[43]  Ruoming Jin,et al.  Large Scale Real-time Ridesharing with Service Guarantee on Road Networks , 2014, Proc. VLDB Endow..

[44]  Michael Drexl,et al.  Synchronization in Vehicle Routing - A Survey of VRPs with Multiple Synchronization Constraints , 2012, Transp. Sci..

[45]  Qing Liu,et al.  Towards enhancing the last-mile delivery: An effective crowd-tasking model with scalable solutions , 2016 .

[46]  Hajo A. Reijers,et al.  The Share-a-Ride Problem: People and parcels sharing taxis , 2014, Eur. J. Oper. Res..

[47]  R. W. Calvo,et al.  A Granular Tabu Search algorithm for the Dial-a-Ride Problem , 2013 .

[48]  Chen Wei,et al.  Synchronizing vehicles for multi-vehicle and one-cargo transportation , 2018, Comput. Ind. Eng..

[49]  Jn Laplante,et al.  The continuing evolution of pedestrian walking speed assumptions , 2004 .

[50]  Fabien Lehuédé,et al.  A shared " passengers & goods " city logistics system , 2012, ICIS 2012.

[51]  Pei Zhang,et al.  Large-scale nationwide ridesharing system: A case study of Chunyun , 2017 .

[52]  Fernando Ordóñez,et al.  Ridesharing: The state-of-the-art and future directions , 2013 .

[53]  Benjamín Barán,et al.  An open-data approach for quantifying the potential of taxi ridesharing , 2017, Decis. Support Syst..

[54]  Lucas P. Veelenturf,et al.  Crowd-Based City Logistics , 2017, Sustainable Transportation and Smart Logistics.

[55]  Jon Louis Bentley,et al.  K-d trees for semidynamic point sets , 1990, SCG '90.

[56]  W. Y. Szeto,et al.  A survey of dial-a-ride problems: Literature review and recent developments , 2018 .

[57]  Pascal Van Hentenryck,et al.  Large Neighborhood Search for Dial-a-Ride Problems , 2011, CP.

[58]  Emilio Frazzoli,et al.  On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment , 2017, Proceedings of the National Academy of Sciences.

[59]  K. Kockelman,et al.  Are we ready to embrace connected and self-driving vehicles? A case study of Texans , 2016, Transportation.

[60]  Julian Nida-Rümelin,et al.  Responsibility for Crashes of Autonomous Vehicles: An Ethical Analysis , 2014, Science and Engineering Ethics.

[61]  Frederik Schulte,et al.  Integrating People and Freight Transportation Using Shared Autonomous Vehicles with Compartments , 2018 .

[62]  Claudio Borean,et al.  Dynamic ride sharing service: are users ready to adopt it? , 2015 .

[63]  Johanna Zmud,et al.  Towards an Understanding of the Travel Behavior Impact of Autonomous Vehicles , 2017 .

[64]  Niels A. H. Agatz,et al.  The Value of Optimization in Dynamic Ride-Sharing: A Simulation Study in Metro Atlanta , 2010 .

[65]  Kris Braekers,et al.  A hybrid Genetic Algorithm for the Heterogeneous Dial-A-Ride Problem , 2017, Comput. Oper. Res..

[66]  Luca Persia,et al.  Automated Vehicles and the Rethinking of Mobility and Cities , 2015 .

[67]  Jonathan Patrick,et al.  An optimization model for freight transport using urban rail transit , 2017, Eur. J. Oper. Res..

[68]  Bo Zou,et al.  Design and modeling of a crowdsource-enabled system for urban parcel relay and delivery , 2017 .

[69]  Kris Braekers,et al.  Three effective metaheuristics to solve the multi-depot multi-trip heterogeneous dial-a-ride problem , 2016 .

[70]  Kris Braekers,et al.  A multi-period dial-a-ride problem with driver consistency , 2016 .

[71]  Matthew J. Roorda,et al.  Moving freight on public transit: Best practices, challenges, and opportunities , 2017 .

[72]  Guy Desaulniers,et al.  Column generation for vehicle routing problems with multiple synchronization constraints , 2016, Eur. J. Oper. Res..

[73]  Maria Elena Bruni,et al.  A Hybrid Greedy Randomized Adaptive Search Heuristic to Solve the Dial-a-Ride Problem , 2013, Asia Pac. J. Oper. Res..

[74]  Mark E. Howard,et al.  When human beings are like drunk robots: Driverless vehicles, ethics, and the future of transport , 2017 .

[75]  Walid Behiri,et al.  Urban freight transport using passenger rail network: Scientific issues and quantitative analysis , 2018, Transportation Research Part E: Logistics and Transportation Review.

[76]  Kara M. Kockelman,et al.  Assessing Public Opinions of and Interest in New Vehicle Technologies: An Austin Perspective , 2016 .

[77]  Corey D. Harper,et al.  Estimating potential increases in travel with autonomous vehicles for the non-driving, elderly and people with travel-restrictive medical conditions , 2016 .

[78]  K. Kockelman,et al.  Shared autonomous electric vehicle (SAEV) operations across the Austin, Texas network with charging infrastructure decisions , 2018 .

[79]  Niels A. H. Agatz,et al.  The Benefits of Meeting Points in Ride-Sharing Systems , 2015 .

[80]  Bruce L. Golden,et al.  Optimization approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: A survey , 2018, Networks.

[81]  Wenwen Zhang,et al.  Exploring the impact of shared autonomous vehicles on urban parking demand: An agent-based simulation approach , 2015 .

[82]  J. Birge,et al.  Assessing the Long-Term Effects of Bank Policies , 2014 .

[83]  Michael Weber,et al.  Evolutionary Multiobjective Route Planning in Dynamic Multi-hop Ridesharing , 2011, EvoCOP.

[84]  John W. Polak,et al.  Autonomous cars: The tension between occupant experience and intersection capacity , 2015 .

[85]  Michel Gendreau,et al.  Large neighborhood search with constraint programming for a vehicle routing problem with synchronization constraints , 2018, Comput. Oper. Res..

[86]  Gilbert Laporte,et al.  An integer L-shaped algorithm for the Dial-a-Ride Problem with stochastic customer delays , 2011, Discret. Appl. Math..

[87]  Christos Katrakazas,et al.  Real-time motion planning methods for autonomous on-road driving: State-of-the-art and future research directions , 2015 .

[88]  B. van Arem,et al.  Development and transport implications of automated vehicles in the Netherlands: scenarios for 2030 and 2050 , 2017, European Journal of Transport and Infrastructure Research.

[89]  Fabien Lehuédé,et al.  Optimization of a city logistics transportation system with mixed passengers and goods , 2017, EURO J. Transp. Logist..