Effects of water parameters on the degradation of microcystin-LR under visible light-activated TiO2 photocatalyst.

[1]  Yingping Huang,et al.  Visible light-activated N-doped TiO 2 nanoparticles for the photocatalytic degradation of microcystin-LR , 2010 .

[2]  Dionysios D. Dionysiou,et al.  Synthesis, structural characterization and evaluation of sol-gel-based NF-TiO2 films with visible light-photoactivation for the removal of microcystin-LR , 2010 .

[3]  L. Lawton,et al.  The degradation of microcystin-LR using doped visible light absorbing photocatalysts. , 2010, Chemosphere.

[4]  D. Dionysiou,et al.  Sources and Occurrence of Cyanotoxins Worldwide , 2010 .

[5]  Despo Fatta-Kassinos,et al.  Xenobiotics in the Urban Water Cycle , 2010 .

[6]  D. Dionysiou,et al.  Impact of the morphological properties of thin TiO2 photocatalytic films on the detoxification of water contaminated with the cyanotoxin, microcystin-LR , 2009 .

[7]  T. Tachikawa,et al.  Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity , 2009 .

[8]  L. Forró,et al.  Abatement of organics and Escherichia coli by N, S co-doped TiO2 under UV and visible light. Implications of the formation of singlet oxygen (1O2) under visible light , 2009 .

[9]  S. Goldstein,et al.  Mechanism of Visible Light Photocatalytic Oxidation of Methanol in Aerated Aqueous Suspensions of Carbon-Doped TiO2 , 2008 .

[10]  Gaetano Granozzi,et al.  The Nature of Defects in Fluorine-Doped TiO2 , 2008 .

[11]  D. Dionysiou,et al.  LC/MS/MS structure elucidation of reaction intermediates formed during the TiO(2) photocatalysis of microcystin-LR. , 2008, Toxicon : official journal of the International Society on Toxinology.

[12]  S. Pillai,et al.  Improved High-Temperature Stability and Sun-Light-Driven Photocatalytic Activity of Sulfur-Doped Anatase TiO2 , 2008 .

[13]  P. Falaras,et al.  Nitrogen modified nanostructured titania: electronic, structural and visible‐light photocatalytic properties , 2008 .

[14]  Qi Li,et al.  Enhanced Visible‐Light Photocatalytic Degradation of Humic Acid by Palladium‐Modified Nitrogen‐Doped Titanium Oxide , 2007 .

[15]  Miguel Pelaez,et al.  Mesoporous nitrogen-doped TiO2 for the photocatalytic destruction of the cyanobacterial toxin microcystin-LR under visible light irradiation. , 2007, Environmental science & technology.

[16]  T. Strathmann,et al.  Visible-light-Mediated TiO2 photocatalysis of fluoroquinolone antibacterial agents. , 2007, Environmental science & technology.

[17]  W. J. Cooper,et al.  Electron pulse radiolysis determination of hydroxyl radical rate constants with Suwannee River fulvic acid and other dissolved organic matter isolates. , 2007, Environmental science & technology.

[18]  M. Nanny,et al.  Effect of inorganic anions on the titanium dioxide-based photocatalytic oxidation of aqueous ammonia and nitrite , 2007 .

[19]  Anilesh Kumar,et al.  Photocatalytic degradation of aniline at the interface of TiO2 suspensions containing carbonate ions. , 2006, Journal of colloid and interface science.

[20]  J. Meriluoto,et al.  Oxidation of the cyanobacterial hepatotoxin microcystin-LR by chlorine dioxide: influence of natural organic matter. , 2006, Environmental science & technology.

[21]  Shicheng Zhang,et al.  Electron spin resonance spin-trapping detection of radical intermediates in N-doped TiO2-assisted photodegradation of 4-chlorophenol. , 2006, The journal of physical chemistry. B.

[22]  Hajime Haneda,et al.  Origin of visible-light-driven photocatalysis: A comparative study on N/F-doped and N–F-codoped TiO2 powders by means of experimental characterizations and theoretical calculations , 2005 .

[23]  D. Dionysiou,et al.  Cyanotoxins: New Generation of Water Contaminants , 2005 .

[24]  Fritz H Frimmel,et al.  Photocatalytic degradation of carbamazepine, clofibric acid and iomeprol with P25 and Hombikat UV100 in the presence of natural organic matter (NOM) and other organic water constituents. , 2005, Water research.

[25]  Wonyong Choi,et al.  Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. , 2004, Water research.

[26]  P. Westerhoff,et al.  Biosorption of humic and fulvic acids to live activated sludge biomass. , 2003, Water research.

[27]  Peter K. J. Robertson,et al.  Processes influencing surface interaction and photocatalytic destruction of microcystins on titanium dioxide photocatalysts , 2003 .

[28]  W. Choi,et al.  Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light. , 2003, Environmental science & technology.

[29]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[30]  A. Nemes,et al.  Kinetics and Mechanism of the Carbonate Ion Inhibited Aqueous Ozone Decomposition , 2000 .

[31]  C. Steinberg,et al.  Rates of Humic Substance Photosensitized Degradation of Microcystin-LR in Natural Waters , 2000 .

[32]  J. Laîné,et al.  Effect of ionic strength and hydrogen peroxide on the photocatalytic degradation of 4-chlorobenzoic acid in water , 2000 .

[33]  T. Waite,et al.  Photocatalytic Degradation of the Blue Green Algal Toxin Microcystin-LR in a Natural Organic-Aqueous Matrix , 1999 .

[34]  M. Hennion,et al.  Determination of some physicochemical parameters of microcystins (cyanobacterial toxins) and trace level analysis in environmental samples using liquid chromatography. , 1998, Journal of chromatography. A.