linfinity-Stability for linear multiresolution algorithms: A new explicit approach. Part III: The 2-D case

Abstract This paper is devoted to the stability in the infinity norm for the Mallat’s multiresolution transform in 2-D. Explicit error bounds are presented by using some appropriate reformulations of the successive convolutions, some contraction properties and some alternative normalizations. The two new things in our study is the use of only basic rules and the derivation of explicit bounds. In particular, it can be understood for a wide part of the scientific community. Moreover, the results should be useful in mathematical, medical, physical, biological and engineering applications.

[1]  I. Daubechies,et al.  Non-separable bidimensional wavelets bases. , 1993 .

[2]  Bijoy K. Ghosh,et al.  Multiresolution filtering with application to image segmentation , 1996 .

[3]  R. Jia,et al.  Multivariate refinement equations and convergence of subdivision schemes , 1998 .

[4]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[5]  I. Daubechies,et al.  Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .

[6]  L. Schumaker,et al.  Recent advances in wavelet analysis , 1995 .

[7]  Francesc Aràndiga,et al.  Stability Through Synchronization in Nonlinear Multiscale Transformations , 2007, SIAM J. Sci. Comput..

[8]  G. Rota,et al.  A note on the joint spectral radius , 1960 .

[9]  Larry Shepp,et al.  Fast Functional Magnetic Resonance Imaging via Prolate Wavelets , 2000 .

[10]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[11]  Sergio Amat,et al.  linfinity-Stability for linear multiresolution algorithms: A new explicit approach. Part II: The cases of Symlets, Coiflets, biorthogonal wavelets and supercompact multiwavelets , 2008, Appl. Math. Comput..

[12]  S. Mallat A wavelet tour of signal processing , 1998 .

[13]  William A. Pearlman,et al.  An image multiresolution representation for lossless and lossy compression , 1996, IEEE Trans. Image Process..

[14]  Henry Tabe,et al.  Wavelet Transform , 2009, Encyclopedia of Biometrics.

[15]  Jerome M. Shapiro,et al.  Embedded image coding using zerotrees of wavelet coefficients , 1993, IEEE Trans. Signal Process..

[16]  M. Kobayashi Wavelets and their applications in industry , 2001 .

[17]  Sergio Amat,et al.  linfinity-Stability for linear multiresolution algorithms: A new explicit approach. Part I: The basic rules and the Daubechies case , 2008, Appl. Math. Comput..

[18]  Rémy Prost,et al.  Multiresolution reconstruction in fan-beam tomography , 2002, IEEE Trans. Image Process..

[19]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[20]  I. Daubechies,et al.  A STABILITY CRITERION FOR BIORTHOGONAL WAVELET BASES AND THEIR RELATED SUBBAND CODING SCHEME , 1992 .

[21]  W. Dahmen Stability of Multiscale Transformations. , 1995 .

[22]  A. Cohen Numerical Analysis of Wavelet Methods , 2003 .

[23]  E. Kolaczyk A Wavelet Shrinkage Approach to Tomographic Image Reconstruction , 1996 .