Kernel estimation for quantile sensitivities

Quantiles, also known as value-at-risk in financial applications, are important measures of random performance. Quantile sensitivities provide information on how changes in the input parameters affect the output quantiles. In this paper, we study the estimation of quantile sensitivities using simulation. We propose a new estimator by employing kernel method and show its consistency and asymptotic normality for i.i.d. data. Numerical results show that our estimator works well for the test problems.

[1]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[2]  G. Roussas Nonparametric regression estimation under mixing conditions , 1990 .

[3]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[4]  L. Jeff Hong,et al.  Estimating Quantile Sensitivities , 2009, Oper. Res..

[5]  P. Sen On the Bahadur representation of sample quantiles for sequences of φ-mixing random variables , 1972 .

[6]  Philippe Jorion Value at Risk , 2001 .

[7]  Yin Zhang,et al.  Optimizing cost and performance for multihoming , 2004, SIGCOMM '04.

[8]  Arnold H. Buss,et al.  Building complex models with LEGOs (Listener Event Graph Objects) , 2002, Proceedings of the Winter Simulation Conference.

[9]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[10]  P. Austin,et al.  Quantile regression: a statistical tool for out-of-hospital research. , 2003, Academic emergency medicine : official journal of the Society for Academic Emergency Medicine.

[11]  Ralph Johnson,et al.  design patterns elements of reusable object oriented software , 2019 .

[12]  Paul Glasserman,et al.  Gradient Estimation Via Perturbation Analysis , 1990 .

[13]  Pierre L'Ecuyer,et al.  An overview of derivative estimation , 1991, 1991 Winter Simulation Conference Proceedings..

[14]  David Goldsman,et al.  Large-Sample Results for Batch Means , 1997 .

[15]  M. R. Leadbetter,et al.  On the Estimation of the Probability Density, I , 1963 .

[16]  Dirk Tasche,et al.  Capital allocation for credit portfolios with kernel estimators , 2006, math/0612470.

[17]  D. Duffie,et al.  An Overview of Value at Risk , 1997 .

[18]  Qi Li,et al.  Nonparametric Econometrics: Theory and Practice , 2006 .

[19]  R. Durrett Probability: Theory and Examples , 1993 .

[20]  Philip Heidelberger,et al.  Quantile Estimation in Dependent Sequences , 1984, Oper. Res..

[21]  Lee W. Schruben,et al.  Simulation modeling with event graphs , 1983, CACM.

[22]  Paul Glasserman,et al.  Sensitivity Analysis for Base-Stock Levels in Multiechelon Production-Inventory Systems , 1995 .

[23]  Lee W. Schruben,et al.  Confidence Interval Estimation Using Standardized Time Series , 1983, Oper. Res..

[24]  Young K. Truoung Nonparametric curve estimation with time series errors , 1992 .

[25]  Olivier Scaillet,et al.  Sensitivity Analysis of Values at Risk , 2000 .

[26]  Eugene F. Schuster,et al.  Joint Asymptotic Distribution of the Estimated Regression Function at a Finite Number of Distinct Points , 1972 .

[27]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[28]  D. Hunter Measuring marginal risk contributions in credit portfolios , 2006 .

[29]  P. Glasserman,et al.  Estimating security price derivatives using simulation , 1996 .

[30]  A. Ullah,et al.  Nonparametric Econometrics: Semiparametric and Nonparametric Estimation of Simultaneous Equation Models , 1999 .

[31]  Denis Bosq,et al.  Nonparametric statistics for stochastic processes , 1996 .

[32]  George G. Roussas,et al.  Asymptotic normality of the recursive kernel regression estimate under dependence conditions , 1992 .

[33]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[34]  Aman Ullah,et al.  Nonparametric Econometrics: Introduction , 1999 .

[35]  E. Lehmann Elements of large-sample theory , 1998 .

[36]  Donald L. Iglehart,et al.  Large-sample theory for standardized time series: an overview , 1985, WSC '85.

[37]  L. Jeff Hong,et al.  Simulating Sensitivities of Conditional Value at Risk , 2009, Manag. Sci..

[38]  Peter C Austin,et al.  Quantile regression: a statistical tool for out-of-hospital research. , 2003, Academic emergency medicine : official journal of the Society for Academic Emergency Medicine.

[39]  J. Marsden,et al.  Elementary classical analysis , 1974 .