This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text (HTML) versions will be made available soon.

[1]  J. Slate,et al.  A Linkage Map of the Zebra Finch Taeniopygia guttata Provides New Insights Into Avian Genome Evolution , 2008, Genetics.

[2]  Adam Eyre-Walker,et al.  Changing effective population size and the McDonald-Kreitman test. , 2002, Genetics.

[3]  M. Campbell,et al.  PANTHER: a library of protein families and subfamilies indexed by function. , 2003, Genome research.

[4]  Bernice R. Packer,et al.  High level of functional polymorphism indicates a unique role of natural selection at human immune system loci , 2005, Immunogenetics.

[5]  D. Begun,et al.  Natural selection drives Drosophila immune system evolution. , 2003, Genetics.

[6]  Erik Axelsson,et al.  Strong regional biases in nucleotide substitution in the chicken genome. , 2006, Molecular biology and evolution.

[7]  Heng Li,et al.  A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. , 2004, Nature.

[8]  H. Tempest,et al.  The evolution of the avian genome as revealed by comparative molecular cytogenetics , 2007, Cytogenetic and Genome Research.

[9]  Colin N. Dewey,et al.  Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution , 2004, Nature.

[10]  H. Ellegren,et al.  Quantification of adaptive evolution of genes expressed in avian brain and the population size effect on the efficacy of selection. , 2009, Molecular biology and evolution.

[11]  P. Andolfatto Controlling Type-I Error of the McDonald–Kreitman Test in Genomewide Scans for Selection on Noncoding DNA , 2008, Genetics.

[12]  D. Higgins,et al.  T-Coffee: A novel method for fast and accurate multiple sequence alignment. , 2000, Journal of molecular biology.

[13]  Adam Eyre-Walker,et al.  Adaptive protein evolution in Drosophila , 2002, Nature.

[14]  David J. States,et al.  Identification of protein coding regions by database similarity search , 1993, Nature Genetics.

[15]  M. Pagel,et al.  Origin of avian genome size and structure in non-avian dinosaurs , 2007, Nature.

[16]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[17]  Ziheng Yang Inference of selection from multiple species alignments. , 2002, Current opinion in genetics & development.

[18]  Feng Gao,et al.  Isochore structures in the chicken genome , 2006, The FEBS journal.

[19]  N. Carter,et al.  Avian comparative genomics: reciprocal chromosome painting between domestic chicken (Gallus gallus) and the stone curlew (Burhinus oedicnemus, Charadriiformes)—An atypical species with low diploid number , 2009, Chromosome Research.

[20]  H. Ellegren Molecular evolutionary genomics of birds , 2007, Cytogenetic and Genome Research.

[21]  G. Bernardi,et al.  Isochore pattern and gene distribution in the chicken genome. , 2007, Gene.

[22]  Adam Eyre-Walker,et al.  The genomic rate of adaptive evolution. , 2006, Trends in ecology & evolution.

[23]  D. Burt,et al.  Comparison of the chicken and turkey genomes reveals a higher rate of nucleotide divergence on microchromosomes than macrochromosomes. , 2005, Genome research.

[24]  G. Bernardi,et al.  Compositional Mapping of Mouse Chromosomes and Identification of the Gene-Rich Regions , 1997, Chromosome Research.

[25]  S. Takeda,et al.  Ku70 prevents genome instability resulting from heterozygosity of the telomerase RNA component in a vertebrate tumour line. , 2008, DNA repair.

[26]  M. Kreitman,et al.  Adaptive protein evolution at the Adh locus in Drosophila , 1991, Nature.

[27]  K. Nozaki,et al.  Dual roles for DNA polymerase eta in homologous DNA recombination and translesion DNA synthesis. , 2005, Molecular cell.