Nonparametric instrumental variables for identification of block-oriented systems

Abstract A combined, parametric-nonparametric identification algorithm for a special case of NARMAX systems is proposed. The parameters of individual blocks are aggregated in one matrix (including mixed products of parameters). The matrix is estimated by an instrumental variables technique with the instruments generated by a nonparametric kernel method. Finally, the result is decomposed to obtain parameters of the system elements. The consistency of the proposed estimate is proved and the rate of convergence is analyzed. Also, the form of optimal instrumental variables is established and the method of their approximate generation is proposed. The idea of nonparametric generation of instrumental variables guarantees that the I.V. estimate is well defined, improves the behaviour of the least-squares method and allows reducing the estimation error. The method is simple in implementation and robust to the correlated noise.

[1]  T. Söderström,et al.  Instrumental-variable methods for identification of Hammerstein systems , 1982 .

[2]  N. L. Johnson,et al.  Linear Statistical Inference and Its Applications , 1966 .

[3]  L. Hansen,et al.  Generalized Instrumental Variables Estimation of Nonlinear Rational Expectations Models , 1982 .

[4]  Er-Wei Bai,et al.  Simulation Of Spring Discharge From A Limestone Aquifer In Iowa, USA , 1996 .

[5]  H. Teicher,et al.  Probability theory: Independence, interchangeability, martingales , 1978 .

[6]  G. Favier,et al.  Numerical integration approach to on-line identification of continuous-time systems , 1990 .

[7]  John R. Beaumont,et al.  Control and Coordination in Hierarchical Systems , 1981 .

[8]  W. Greblicki,et al.  Nonparametric system identification , 2008 .

[9]  Calyampudi R. Rao,et al.  Linear Statistical Inference and Its Applications. , 1975 .

[10]  Grzegorz Mzyk Nonlinearity Recovering in Hammerstein System from Short Measurement Sequence , 2009, IEEE Signal Processing Letters.

[11]  K. Wada,et al.  Bias-compensating least squares method for identification of continuous-time systems from sampled data , 1991 .

[12]  Grzegorz Mzyk,et al.  Generalized Kernel Regression Estimate for the Identification of Hammerstein Systems , 2007, Int. J. Appl. Math. Comput. Sci..

[13]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[14]  Setsuo Sagara,et al.  Numerical integration approach to on-line identification of continuous-time systems , 1990, Autom..

[15]  D. Hill,et al.  Stability theory for differential/algebraic systems with application to power systems , 1990 .

[16]  E. Bai,et al.  Block Oriented Nonlinear System Identification , 2010 .

[17]  W. Cheney,et al.  Numerical analysis: mathematics of scientific computing (2nd ed) , 1991 .

[18]  Sheng Chen,et al.  Representations of non-linear systems: the NARMAX model , 1989 .

[19]  Kwan Wong,et al.  Identification of linear discrete time systems using the instrumental variable method , 1967, IEEE Transactions on Automatic Control.

[20]  David J. Hill,et al.  Lyapunov functions of lur'e-postnikov form for structure preserving models of power systems, , 1989, Autom..

[21]  E. Hannan,et al.  The statistical theory of linear systems , 1989 .

[22]  R. Ward,et al.  Notes on the instrumental variable method , 1977 .

[23]  I. Rowe,et al.  Strongly consistent parameter estimation by the introduction of strong instrumental variables , 1974 .

[24]  J. Geanakoplos,et al.  Generalized Instrumental Variables Estimation of Nonlinear Rational Expectations Models , 2007 .

[25]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[26]  T. Söderström,et al.  Instrumental variable methods for system identification , 1983 .

[27]  Er-Wei Bai An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998, Autom..

[28]  S. Sastry Nonlinear Systems: Analysis, Stability, and Control , 1999 .

[29]  Zygmunt Hasiewicz Applicability of least-squares to the parameter estimation of large-scale no-memory linear composite systems , 1989 .

[30]  Robert Haber Nonlinear System Identification : Input-output Modeling Approach , 1999 .

[31]  David J. Hill,et al.  Impulsive Synchronization of Chaotic Lur'e Systems by Linear Static Measurement Feedback: An LMI Approach , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[32]  Grzegorz Mzyk,et al.  Instrumental variables for nonlinearity recovering in block-oriented systems driven by correlated signals , 2015, Int. J. Syst. Sci..

[33]  Zygmunt Hasiewicz,et al.  Hammerstein system identification by non-parametric instrumental variables , 2009, Int. J. Control.

[34]  J. Suykens,et al.  Impulsive Synchronization of Chaotic Lur'e Systems by Measurement Feedback , 1998 .

[35]  Zdzislaw Kowalczuk,et al.  Continuous-time approaches to identification of continuous-time systems , 2000, Autom..

[36]  V. Solo The Statistical Theory of Linear Systems E. J. Hannan and Manfred Deistler John Wiley & Sons, 1988 , 1992, Econometric Theory.

[37]  P. Varaiya,et al.  Control and coordination in hierarchical systems , 1982, Proceedings of the IEEE.