The lattice generated by hesitant fuzzy filters in pseudo-BCI algebras

[1]  Kyoung-Ja Lee,et al.  SOME IDEALS OF PSEUDO BCI-ALGEBRAS , 2009 .

[2]  Xiaohong Zhang,et al.  IMTL(MV)-filters and fuzzy IMTL(MV)-filters of residuated lattices , 2014, J. Intell. Fuzzy Syst..

[3]  Ming-Wen Shao,et al.  Feature subset selection based on fuzzy neighborhood rough sets , 2016, Knowl. Based Syst..

[4]  Xiaohong Zhang Fuzzy 1-type and 2-type positive implicative filters of pseudo-BCK algebras , 2015, J. Intell. Fuzzy Syst..

[5]  Guiwu Wei,et al.  Hesitant fuzzy prioritized operators and their application to multiple attribute decision making , 2012, Knowl. Based Syst..

[6]  Jianming Zhan,et al.  A new rough set theory: rough soft hemirings , 2015, J. Intell. Fuzzy Syst..

[7]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[8]  Xiaohong Zhang,et al.  Fuzzy anti-grouped filters and fuzzy normal filters in pseudo-BCI algebras , 2017, J. Intell. Fuzzy Syst..

[9]  T. Head Erratum to “A metatheorem for deriving fuzzy theorems from crisp versions”: Fuzzy Sets and Systems 73 (1995) 349–358 , 1996 .

[10]  Zeshui Xu,et al.  Hesitant fuzzy information aggregation in decision making , 2011, Int. J. Approx. Reason..

[11]  George Georgescu,et al.  Pseudo-BCK Algebras: An Extension of BCK Algebras , 2001, DMTCS.

[12]  Keyun Qin,et al.  On soft equality , 2010, J. Comput. Appl. Math..

[13]  Jianming Zhan,et al.  A novel type of soft rough covering and its application to multicriteria group decision making , 2019, Artificial Intelligence Review.

[14]  Xiaohong Zhang,et al.  Neutrosophic Duplet Semi-Group and Cancellable Neutrosophic Triplet Groups , 2017, Symmetry.

[15]  Jun Liu,et al.  Catoptrical rough set model on two universes using granule-based definition and its variable precision extensions , 2017, Inf. Sci..

[16]  Bijan Davvaz,et al.  S-APPROXIMATION SPACES: A FUZZY APPROACH , 2017 .

[17]  Rajkumar Verma,et al.  New operations over hesitant fuzzy sets , 2013 .

[18]  Xiao-hong Zhang,et al.  On pseudo-BL algebras and BCC-algebras , 2006, Soft Comput..

[19]  Jianming Zhan,et al.  A survey of decision making methods based on two classes of hybrid soft set models , 2016, Artificial Intelligence Review.

[20]  Xiaohong Chen,et al.  Hesitant Fuzzy Soft Set and Its Applications in Multicriteria Decision Making , 2014, J. Appl. Math..

[21]  Xiaohong Zhang,et al.  Soft set theoretical approach to pseudo-BCI algebras , 2018, J. Intell. Fuzzy Syst..

[22]  T. Head A metatheorem for deriving fuzzy theorems from crisp versions , 1995 .

[23]  Francisco Herrera,et al.  Hesitant Fuzzy Linguistic Term Sets for Decision Making , 2012, IEEE Transactions on Fuzzy Systems.

[24]  Zeshui Xu,et al.  Distance and similarity measures for hesitant fuzzy sets , 2011, Inf. Sci..

[25]  Peng Li,et al.  A general frame for intuitionistic fuzzy rough sets , 2012, Inf. Sci..

[26]  D. Molodtsov Soft set theory—First results , 1999 .

[27]  Young Bae Jun,et al.  Soft BCK/BCI-algebras , 2008, Comput. Math. Appl..

[28]  W. Dudek,et al.  PSEUDO-BCI ALGEBRAS , 2008 .

[29]  Y. Jun,et al.  On pseudo-bci ideals of pseudo-bci algebras , 2006 .

[30]  Zeshui Xu,et al.  On distance and correlation measures of hesitant fuzzy information , 2011, Int. J. Intell. Syst..

[31]  Y. Jun,et al.  HESITANT FUZZY SET THEORY APPLIED TO FILTERS IN MTL-ALGEBRAS , 2014 .