Sharp bounds for decomposing graphs into edges and triangles

Abstract For a real constant α, let $\pi _3^\alpha (G)$ be the minimum of twice the number of K2’s plus α times the number of K3’s over all edge decompositions of G into copies of K2 and K3, where Kr denotes the complete graph on r vertices. Let $\pi _3^\alpha (n)$ be the maximum of $\pi _3^\alpha (G)$ over all graphs G with n vertices. The extremal function $\pi _3^3(n)$ was first studied by Győri and Tuza (Studia Sci. Math. Hungar. 22 (1987) 315–320). In recent progress on this problem, Král’, Lidický, Martins and Pehova (Combin. Probab. Comput. 28 (2019) 465–472) proved via flag algebras that$\pi _3^3(n) \le (1/2 + o(1)){n^2}$. We extend their result by determining the exact value of $\pi _3^\alpha (n)$ and the set of extremal graphs for all α and sufficiently large n. In particular, we show for α = 3 that Kn and the complete bipartite graph ${K_{\lfloor n/2 \rfloor,\lceil n/2 \rceil }}$ are the only possible extremal examples for large n.

[1]  P. Erdös,et al.  The Representation of a Graph by Set Intersections , 1966, Canadian Journal of Mathematics.

[2]  A. Kostochka,et al.  On a problem of G. O. H. Katona and T. Tarján , 1979 .

[3]  J. Kahn,et al.  Proof of a conjecture of Katona and Tarján , 1981 .

[4]  Fan Chung,et al.  On the Decomposition of Graphs , 1981 .

[5]  D. Y. Kesel'man,et al.  Covering the edges of a graph by circuits , 1987 .

[6]  Ervin Győri,et al.  On the number of edge disjoint cliques in graphs of given size , 1991 .

[7]  Noga Alon,et al.  Efficient Testing of Large Graphs , 2000, Comb..

[8]  Zsolt Tuza,et al.  Unsolved combinatorial problems. Part I. (BRICS Lecture Series, LS-01-1) , 2001 .

[9]  Vojtech Rödl,et al.  Integer and Fractional Packings in Dense Graphs , 2001, Comb..

[10]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[11]  P. Erdos,et al.  SOME RECENT RESULTS ON EXTREMAL PROBLEMS IN GRAPH THEORY (Results) , 2002 .

[12]  Raphael Yuster,et al.  Integer and fractional packing of families of graphs , 2005 .

[13]  Alexander A. Razborov,et al.  Flag algebras , 2007, Journal of Symbolic Logic.

[14]  Alexander A. Razborov,et al.  On the Minimal Density of Triangles in Graphs , 2008, Combinatorics, Probability and Computing.

[15]  John M. Talbot,et al.  Hypergraphs Do Jump , 2010, Combinatorics, Probability and Computing.

[16]  Jean-Sébastien Sereni,et al.  A New Lower Bound Based on Gromov’s Method of Selecting Heavily Covered Points , 2012, Discret. Comput. Geom..

[17]  R. Glebov,et al.  A problem of Erdős and Sós on 3-graphs , 2013, 1303.7372.

[18]  Jie Ma,et al.  A problem of Erdős on the minimum number of k-cliques , 2013, J. Comb. Theory, Ser. B.

[19]  József Balogh,et al.  Maximum density of induced 5-cycle is achieved by an iterated blow-up of 5-cycle , 2016, Eur. J. Comb..

[20]  D. Kuhn,et al.  Edge-decompositions of graphs with high minimum degree , 2014, 1410.5750.

[21]  Alexander A. Razborov,et al.  Asymptotic Structure of Graphs with the Minimum Number of Triangles , 2017, Comb. Probab. Comput..

[22]  François Dross,et al.  Fractional Triangle Decompositions in Graphs with Large Minimum Degree , 2015, SIAM J. Discret. Math..

[23]  Jan Hladký,et al.  Counting flags in triangle-free digraphs , 2009, Comb..

[24]  Balázs Keszegh,et al.  On the Number of Edge-Disjoint Triangles in K4-Free Graphs , 2017, Comb..

[25]  Hong Liu,et al.  The minimum number of triangles in graphs of given order and size , 2017, Electron. Notes Discret. Math..

[26]  Daniel Král,et al.  Decomposing Graphs into Edges and Triangles , 2019, Comb. Probab. Comput..

[27]  Daniel Horsley,et al.  On the Minimum Degree Required for a Triangle Decomposition , 2019, SIAM J. Discret. Math..

[28]  O. Pikhurko,et al.  THE EXACT MINIMUM NUMBER OF TRIANGLES IN GRAPHS WITH GIVEN ORDER AND SIZE , 2017, Forum of Mathematics, Pi.

[29]  Progress towards Nash-Williams' conjecture on triangle decompositions , 2019, J. Comb. Theory, Ser. B.