A novel approach to segmentation and measurement of medical image using level set methods.

The study proposes a novel approach for segmentation and visualization plus value-added surface area and volume measurements for brain medical image analysis. The proposed method contains edge detection and Bayesian based level set segmentation, surface and volume rendering, and surface area and volume measurements for 3D objects of interest (i.e., brain tumor, brain tissue, or whole brain). Two extensions based on edge detection and Bayesian level set are first used to segment 3D objects. Ray casting and a modified marching cubes algorithm are then adopted to facilitate volume and surface visualization of medical-image dataset. To provide physicians with more useful information for diagnosis, the surface area and volume of an examined 3D object are calculated by the techniques of linear algebra and surface integration. Experiment results are finally reported in terms of 3D object extraction, surface and volume rendering, and surface area and volume measurements for medical image analysis.

[1]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Jane Wilhelms,et al.  Topological considerations in isosurface generation , 1994, TOGS.

[3]  Anders Ynnerman,et al.  Uncertainty Visualization in Medical Volume Rendering Using Probabilistic Animation , 2007, IEEE Transactions on Visualization and Computer Graphics.

[4]  U. Brechtken-Manderscheid,et al.  Introduction to the Calculus of Variations , 2014 .

[5]  Joe Michael Kniss,et al.  Multidimensional Transfer Functions for Interactive Volume Rendering , 2002, IEEE Trans. Vis. Comput. Graph..

[6]  Meritxell Bach Cuadra,et al.  A multidimensional segmentation evaluation for medical image data , 2009, Comput. Methods Programs Biomed..

[7]  Dewey Odhner,et al.  A system for brain tumor volume estimation via MR imaging and fuzzy connectedness. , 2005, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[8]  Kevin Marsh,et al.  A Molecular Epidemiological Study of var Gene Diversity to Characterize the Reservoir of Plasmodium falciparum in Humans in Africa , 2011, PloS one.

[9]  Rachid Deriche,et al.  Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Amar Mitiche,et al.  A Region Merging Prior for Variational Level Set Image Segmentation , 2008, IEEE Transactions on Image Processing.

[11]  V. Levin,et al.  Cancer in the nervous system , 1996 .

[12]  Ron Kikinis,et al.  Markov random field segmentation of brain MR images , 1997, IEEE Transactions on Medical Imaging.

[13]  Ahror Belaid,et al.  Phase based level set segmentation of ultrasound images , 2009, 2009 9th International Conference on Information Technology and Applications in Biomedicine.

[14]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[15]  Alan L. Yuille,et al.  Efficient Multilevel Brain Tumor Segmentation With Integrated Bayesian Model Classification , 2008, IEEE Transactions on Medical Imaging.

[16]  P Cignoni,et al.  DeWall: A fast divide and conquer Delaunay triangulation algorithm in Ed , 1998, Comput. Aided Des..

[17]  Luminita A. Vese,et al.  Segmentation under geometrical conditions using geodesic active contours and interpolation using level set methods , 2005, Numerical Algorithms.

[18]  M. van Glabbeke,et al.  New guidelines to evaluate the response to treatment in solid tumors , 2000, Journal of the National Cancer Institute.

[19]  E. Kreyszig,et al.  Advanced Engineering Mathematics. , 1974 .

[20]  Yao-Tien Chen,et al.  A level set method based on the Bayesian risk for medical image segmentation , 2010, Pattern Recognit..

[21]  J. Udupa,et al.  Estimation of tumor volume with fuzzy-connectedness segmentation of MR images. , 2002, AJNR. American journal of neuroradiology.

[22]  Irene Cheng,et al.  Fluid Vector Flow and Applications in Brain Tumor Segmentation , 2009, IEEE Transactions on Biomedical Engineering.

[23]  Brian B. Avants,et al.  The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) , 2015, IEEE Transactions on Medical Imaging.

[24]  Sim Heng Ong,et al.  Level-set segmentation of brain tumors using a threshold-based speed function , 2010, Image Vis. Comput..

[25]  S.Pannirselvam,et al.  A Geodesic Active Contour Level Set Method for Image Segmentation , 2012 .

[26]  J. Wilhelms,et al.  Topological considerations in isosurface generation extended abstract , 1990, SIGGRAPH 1990.

[27]  John H. Sampson,et al.  A Novel Method for Volumetric MRI Response Assessment of Enhancing Brain Tumors , 2011, PloS one.

[28]  Hong Yi,et al.  A survey of the marching cubes algorithm , 2006, Comput. Graph..

[29]  T. Cascino,et al.  Response criteria for phase II studies of supratentorial malignant glioma. , 1990, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[30]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[31]  R. Kochendörffer Kreyszig, E.: Advanced Engineering Mathematics. J. Wiley & Sons, Inc., New York, London 1962. IX + 856 S. 402 Abb. Preis s. 79.— , 1965 .

[32]  M. J. van den Bent V.A. Levin (ed). Cancer in the Nervous System , 2003 .

[33]  Luigi Landini,et al.  Real-time multimodal medical image processing: a dynamic volume-rendering application , 1997, IEEE Transactions on Information Technology in Biomedicine.

[34]  Zbigniew Petrovich,et al.  Combined Modality Therapy of Central Nervous System Tumors , 2003, Medical Radiology.

[35]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[36]  D. T. Lee,et al.  Two algorithms for constructing a Delaunay triangulation , 1980, International Journal of Computer & Information Sciences.

[37]  Tony F. Chan,et al.  ACTIVE CONTOUR and SEGMENTATION MODELS USING GEOMETRIC PDE's for MEDICAL IMAGING ? , 2002 .

[38]  Michael Unser,et al.  Variational B-Spline Level-Set: A Linear Filtering Approach for Fast Deformable Model Evolution , 2009, IEEE Transactions on Image Processing.