On the rainbow matching conjecture for 3-uniform hypergraphs

Aharoni and Howard, and, independently, Huang, Loh, and Sudakov proposed the following rainbow version of Erd\H{o}s matching conjecture: For positive integers $n,k,m$ with $n\ge km$, if each of the families $F_1,\ldots, F_m\subseteq {[n]\choose k}$ has size more than $\max\{\binom{n}{k} - \binom{n-m+1}{k}, \binom{km-1}{k}\}$, then there exist pairwise disjoint subsets $e_1,\dots, e_m$ such that $e_i\in F_i$ for all $i\in [m]$. We prove that there exists an absolute constant $n_0$ such that this rainbow version holds for $k=3$ and $n\geq n_0$. Our proof combines several existing techniques with a new stability result on matchings in 3-uniform hypergraphs.

[2]  Peter Frankl,et al.  Simple juntas for shifted families , 2019, discrete Analysis.

[3]  Hao Huang,et al.  The Size of a Hypergraph and its Matching Number , 2011, Combinatorics, Probability and Computing.

[4]  Xingxing Yu,et al.  Nearly Perfect Matchings in Uniform Hypergraphs , 2019, SIAM J. Discret. Math..

[5]  D. E. Daykin,et al.  SETS OF INDEPENDENT EDGES OF A HYPERGRAPH , 1976 .

[6]  Peter Frankl,et al.  Improved bounds for Erdős' Matching Conjecture , 2013, J. Comb. Theory, Ser. A.

[7]  Andrey Kupavskii,et al.  Rainbow matchings in k-partite hypergraphs , 2020, ArXiv.

[8]  D. Howard SIZE CONDITIONS FOR THE EXISTENCE OF RAINBOW MATCHINGS , 2011 .

[9]  Peter Frankl,et al.  On Matchings in Hypergraphs , 2012, Electron. J. Comb..

[10]  N. Alon,et al.  The Probabilistic Method, Second Edition , 2000 .

[11]  Vojtech Rödl,et al.  Large matchings in uniform hypergraphs and the conjectures of Erdős and Samuels , 2011, J. Comb. Theory, Ser. A.

[12]  P. Frankl Proof of the Erdős matching conjecture in a new range , 2017 .

[13]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[14]  Peter Frankl,et al.  On the size of graphs with complete-factors , 1985, J. Graph Theory.

[15]  László Pyber,et al.  A new generalization of the Erdös-Ko-Rado theorem , 1986, J. Comb. Theory A.

[16]  P. Erdos A PROBLEM ON INDEPENDENT r-TUPLES , 1965 .

[18]  Nathan Keller,et al.  The junta method for hypergraphs and the Erdős-Chvátal simplex conjecture , 2021, Advances in Mathematics.

[19]  Peter Frankl,et al.  On the maximum number of edges in a hypergraph with given matching number , 2012, Discret. Appl. Math..

[20]  Zoltán Füredi,et al.  A new generalization of the Erdős-Ko-Rado theorem , 1983, Comb..

[21]  TOMASZ LUCZAK,et al.  On Erdős' extremal problem on matchings in hypergraphs , 2012, J. Comb. Theory, Ser. A.

[22]  Xingxing Yu,et al.  Rainbow matchings for 3-uniform hypergraphs , 2020, J. Comb. Theory, Ser. A.

[23]  Nathan Keller,et al.  The Junta Method for Hypergraphs and Chv\'atal's Simplex Conjecture , 2017 .