Towards a universal tracking database

In moving object databases, authors usually assume that number and position of objects to be processed are always known in advance. Detecting an unknown moving object and pursuing its movement, however, is usually left to tracking algorithms resting outside the database. Trackers are complex software systems which process sensor data and application-specific context information in order to detect, classify, monitor and predict the course of moving objects. As there are no universal software tools for realizing a tracker, such systems are usually hand-coded from scratch for each tracking application. In this paper we present a way how to implement a framework for implementing universal trackers inside a database. As a use case, we consider the well-known probabilistic multiple hypothesis tracking approach (PMHT) and the interacting multiple model filter (IMM) for realizing typical tracking tasks. We show that incremental view maintenance techniques and Bregman Ball trees are well-suited for efficiently implementing state-of-the-art trackers for processing streams of radar data.

[1]  Lawrence Cayton,et al.  Fast nearest neighbor retrieval for bregman divergences , 2008, ICML '08.

[2]  Klaus H. Hinrichs,et al.  Managing uncertainty in moving objects databases , 2004, TODS.

[3]  Samuel Jarrod Davey,et al.  Extensions to the Probabilistic Multi-Hypothesis Tracker for Improved Data Association , 2003 .

[4]  Hans-Peter Kriegel,et al.  Efficient User-Adaptable Similarity Search in Large Multimedia Databases , 1997, VLDB.

[5]  Krishna R. Pattipati,et al.  Ground target tracking with variable structure IMM estimator , 2000, IEEE Trans. Aerosp. Electron. Syst..

[6]  Andreas Behrend,et al.  Detecting Moving Objects in Noisy Radar Data Using a Relational Database , 2009, ADBIS.

[7]  Samuel S. Blackman,et al.  Design and Analysis of Modern Tracking Systems , 1999 .

[8]  James Llinas,et al.  Handbook of Multisensor Data Fusion : Theory and Practice, Second Edition , 2008 .

[9]  James Llinas,et al.  Multisensor Data Fusion , 1990 .

[10]  Branko Ristic,et al.  On target classification using kinematic data , 2004, Inf. Fusion.

[11]  Andreas Behrend,et al.  Efficient tracking of moving objects using a relational database , 2013, Inf. Syst..

[12]  Edward Y. Chang,et al.  Adaptive stream resource management using Kalman Filters , 2004, SIGMOD '04.

[13]  Kun Li,et al.  The MADlib Analytics Library or MAD Skills, the SQL , 2012, Proc. VLDB Endow..

[14]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[15]  Inderpal Singh Mumick,et al.  Deriving Production Rules For Incremental View Maintenance , 1999 .

[16]  Ouri Wolfson,et al.  A weight-based map matching method in moving objects databases , 2004, Proceedings. 16th International Conference on Scientific and Statistical Database Management, 2004..

[17]  Naphtali Rishe,et al.  Databases for Tracking Mobile Units in Real Time , 1999, ICDT.

[18]  Naphtali Rishe,et al.  Answer-pairs and processing of continuous nearest-neighbor queries , 2011, FOMC '11.

[19]  Jaegeol Yim,et al.  Petri-net model and minimum cycle time for updating a moving objects database , 2006, Comput. Syst. Sci. Eng..

[20]  Jan Wendel Integrierte Navigationssysteme: Sensordatenfusion, GPS und Inertiale Navigation , 2007 .

[21]  Ralf Hartmut Güting,et al.  Spatiotemporal pattern queries , 2011, GeoInformatica.

[22]  Ralf Hartmut Güting,et al.  Efficient k-nearest neighbor search on moving object trajectories , 2010, The VLDB Journal.

[23]  Amol Deshpande,et al.  Online Filtering, Smoothing and Probabilistic Modeling of Streaming data , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[24]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[25]  Y. Bar-Shalom Tracking and data association , 1988 .

[26]  A. Prasad Sistla,et al.  Modeling and querying moving objects , 1997, Proceedings 13th International Conference on Data Engineering.

[27]  Roy L. Streit,et al.  Maximum likelihood method for probabilistic multihypothesis tracking , 1994, Defense, Security, and Sensing.

[28]  Wolfgang Koch,et al.  On Sequential Track Extraction within the PMHT Framework , 2008, EURASIP J. Adv. Signal Process..

[29]  G. V. Keuk MHT extraction and track maintenance of a target formation , 2002 .

[30]  Ralf Hartmut Güting,et al.  Nearest Neighbor Search on Moving Object Trajectories in Secondo , 2009, SSTD.

[31]  Wolfgang Koch,et al.  The PMHT: solutions for some of its problems , 2007, SPIE Optical Engineering + Applications.

[32]  Bo Xu,et al.  Time-series prediction with applications to traffic and moving objects databases , 2003, MobiDe '03.

[33]  Bo Xu,et al.  Moving objects databases: issues and solutions , 1998, Proceedings. Tenth International Conference on Scientific and Statistical Database Management (Cat. No.98TB100243).

[34]  Jie Lin,et al.  A platform for the development and evaluation of passive safety applications , 2012, 2012 IEEE Intelligent Vehicles Symposium.

[35]  Christian Böhm,et al.  Fast parallel similarity search in multimedia databases , 1997, SIGMOD '97.

[36]  J. Demmel,et al.  Sun Microsystems , 1996 .

[37]  Aubrey B. Poore,et al.  A Bayesian network tracking database , 2004, SPIE Defense + Commercial Sensing.

[38]  Yuan-Ko Huang,et al.  Indexing and querying moving objects with uncertain speed and direction in spatiotemporal databases , 2013, Journal of Geographical Systems.