Bounds for partition dimension of M-wheels

Abstract Resolving partition and partition dimension have multipurpose applications in computer, networking, optimization, mastermind games and modelling of chemical substances. The problem of finding exact values of partition dimension is hard so one can find bound for the partition dimension of a general family of graph. In the present article, we give the sharp upper bounds and lower bounds for the partition dimension of m-wheel, Wn,m for all n ≥ 4 and m ≥ 1. Presented data generalise some already available results.

[1]  Jia-bao Liu,et al.  Distance and Adjacency Energies of Multi-Level Wheel Networks , 2019, Mathematics.

[2]  Glenn G. Chappell,et al.  Bounds on the metric and partition dimensions of a graph , 2008, Ars Comb..

[3]  Gary Chartrand,et al.  The partition dimension of a graph , 2000 .

[4]  José Cáceres,et al.  On the metric dimension of some families of graphs , 2005, Electron. Notes Discret. Math..

[5]  Mobeen Munir,et al.  Metric Dimension of the Mobius Ladder , 2017, Ars Comb..

[6]  M. Munir,et al.  Sharp bounds for partition dimension of generalized Möbius ladders , 2018 .

[7]  Jia-bao Liu,et al.  Stanley Depth of Edge Ideals of Some Wheel-Related Graphs , 2019, Mathematics.

[8]  Gary Chartrand,et al.  Resolvability and the upper dimension of graphs , 2000 .

[9]  Martin Aigner,et al.  Proofs from THE BOOK , 1998 .

[10]  Shin Min Kang,et al.  Computing Metric Dimension and Metric Basis of 2D Lattice of Alpha-Boron Nanotubes , 2018, Symmetry.

[11]  Azriel Rosenfeld,et al.  Landmarks in Graphs , 1996, Discret. Appl. Math..

[12]  Ioan Tomescu,et al.  Metric bases in digital geometry , 1984, Comput. Vis. Graph. Image Process..

[13]  Gary Chartrand,et al.  Boundary vertices in graphs , 2003, Discret. Math..

[14]  Gary Chartrand,et al.  Resolvability in graphs and the metric dimension of a graph , 2000, Discret. Appl. Math..

[15]  Muhammad Imran,et al.  Computing the metric dimension of wheel related graphs , 2014, Appl. Math. Comput..

[16]  T. Turacı THE AVERAGE LOWER 2-DOMINATION NUMBER OF WHEELS RELATED GRAPHS AND AN ALGORITHM , 2016 .

[17]  Gary Chartrand,et al.  On k-dimensional graphs and their bases , 2003, Period. Math. Hung..

[18]  Leonard M. Blumenthal,et al.  Theory and applications of distance geometry , 1954 .

[19]  Ping Zhang,et al.  The metric dimension of unicyclic graphs , 2002 .

[20]  Gohar Ali,et al.  On the metric dimension of Mobius ladders , 2012, Ars Comb..

[21]  David R. Wood,et al.  On the Metric Dimension of Cartesian Products of Graphs , 2005, SIAM J. Discret. Math..

[22]  Tufan Turaci,et al.  Vertex Vulnerability Parameter of Gear Graphs , 2011, Int. J. Found. Comput. Sci..

[23]  Ioan Tomescu,et al.  On Metric and Partition Dimensions of Some Inflnite Regular Graphs , 2009 .

[24]  András Sebö,et al.  On Metric Generators of Graphs , 2004, Math. Oper. Res..

[25]  Ioan Tomescu,et al.  On the partition dimension and connected partition dimension of wheels , 2007, Ars Comb..

[26]  Peter Frank,et al.  Remarks on Detection Problems , 1967 .

[27]  ON TWO PROBLEMS OF INFORMATION THEORY , 2017 .

[28]  Henning Fernau,et al.  On the partition dimension of unicyclic graphs , 2011 .