Semiconcave Control-Lyapunov Functions and Stabilizing Feedbacks

We study the general problem of stabilization of globally asymptotically controllable systems. We construct discontinuous feedback laws, and particularly we make it possible to choose these continuous outside a small set (closed with measure zero) of discontinuity in the case of control systems which are affine in the control; moreover this set of singularities is shown to be repulsive for the Caratheodory solutions of the closed-loop system under an additional assumption.

[1]  Z. Artstein Stabilization with relaxed controls , 1983 .

[2]  Ludovic Rifford Problèmes de stabilisation en théorie de contrôle , 2000 .

[3]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[4]  Ludovic Rifford,et al.  On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients , 2001 .

[5]  Eduardo Sontag,et al.  Remarks on continuous feedback , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[6]  F. Morgan Geometric Measure Theory: A Beginner's Guide , 1988 .

[7]  Yu. S. Ledyaev,et al.  Asymptotic Stability and Smooth Lyapunov Functions , 1998 .

[8]  Ludovic Rifford,et al.  Existence of Lipschitz and Semiconcave Control-Lyapunov Functions , 2000, SIAM J. Control. Optim..

[9]  Jean-Michel Coron,et al.  Global asymptotic stabilization for controllable systems without drift , 1992, Math. Control. Signals Syst..

[10]  H. Sussmann Subanalytic sets and feedback control , 1979 .

[11]  Yu. S. Ledyaev,et al.  A Lyapunov characterization of robust stabilization , 1999 .

[12]  Jean-Baptiste Pomet Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift , 1992 .

[13]  F. Ancona,et al.  Patchy Vector Fields and Asymptotic Stabilization , 1999 .

[14]  Ludovic Rifford Stabilisation des systèmes globalement asymptotiquement commandables , 2000 .

[15]  J. Aubin Set-valued analysis , 1990 .

[16]  Ludovic Rifford,et al.  Singularities of viscosity solutions and the stabilization problem in the plane , 2003 .

[17]  Yu. S. Ledyaev,et al.  Asymptotic controllability implies feedback stabilization , 1997, IEEE Trans. Autom. Control..

[18]  H. Soner,et al.  On the propagation of singularities of semi-convex functions , 1993 .

[19]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[20]  Eduardo Sontag Stability and stabilization: discontinuities and the effect of disturbances , 1999, math/9902026.

[21]  Luděk Zajíček,et al.  On the differentiation of convex functions in finite and infinite dimensional spaces , 1979 .

[22]  T. O’Neil Geometric Measure Theory , 2002 .

[23]  Eduardo D. Sontag,et al.  General Classes of Control-Lyapunov Functions , 1996 .

[24]  Giovanni Alberti,et al.  On the singularities of convex functions , 1992 .

[25]  Eduardo Sontag,et al.  Nonsmooth control-Lyapunov functions , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[26]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[27]  A. I. Subbotin,et al.  Game-Theoretical Control Problems , 1987 .

[28]  Francis H. Clarke,et al.  Feedback Stabilization and Lyapunov Functions , 2000, SIAM J. Control. Optim..

[29]  E. Michael Continuous Selections. I , 1956 .

[30]  Eduardo Sontag A universal construction of Artstein's theorem on nonlinear stabilization , 1989 .