Semiconcave Control-Lyapunov Functions and Stabilizing Feedbacks
暂无分享,去创建一个
[1] Z. Artstein. Stabilization with relaxed controls , 1983 .
[2] Ludovic Rifford. Problèmes de stabilisation en théorie de contrôle , 2000 .
[3] P. Lions,et al. User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.
[4] Ludovic Rifford,et al. On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients , 2001 .
[5] Eduardo Sontag,et al. Remarks on continuous feedback , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.
[6] F. Morgan. Geometric Measure Theory: A Beginner's Guide , 1988 .
[7] Yu. S. Ledyaev,et al. Asymptotic Stability and Smooth Lyapunov Functions , 1998 .
[8] Ludovic Rifford,et al. Existence of Lipschitz and Semiconcave Control-Lyapunov Functions , 2000, SIAM J. Control. Optim..
[9] Jean-Michel Coron,et al. Global asymptotic stabilization for controllable systems without drift , 1992, Math. Control. Signals Syst..
[10] H. Sussmann. Subanalytic sets and feedback control , 1979 .
[11] Yu. S. Ledyaev,et al. A Lyapunov characterization of robust stabilization , 1999 .
[12] Jean-Baptiste Pomet. Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift , 1992 .
[13] F. Ancona,et al. Patchy Vector Fields and Asymptotic Stabilization , 1999 .
[14] Ludovic Rifford. Stabilisation des systèmes globalement asymptotiquement commandables , 2000 .
[15] J. Aubin. Set-valued analysis , 1990 .
[16] Ludovic Rifford,et al. Singularities of viscosity solutions and the stabilization problem in the plane , 2003 .
[17] Yu. S. Ledyaev,et al. Asymptotic controllability implies feedback stabilization , 1997, IEEE Trans. Autom. Control..
[18] H. Soner,et al. On the propagation of singularities of semi-convex functions , 1993 .
[19] R. W. Brockett,et al. Asymptotic stability and feedback stabilization , 1982 .
[20] Eduardo Sontag. Stability and stabilization: discontinuities and the effect of disturbances , 1999, math/9902026.
[21] Luděk Zajíček,et al. On the differentiation of convex functions in finite and infinite dimensional spaces , 1979 .
[22] T. O’Neil. Geometric Measure Theory , 2002 .
[23] Eduardo D. Sontag,et al. General Classes of Control-Lyapunov Functions , 1996 .
[24] Giovanni Alberti,et al. On the singularities of convex functions , 1992 .
[25] Eduardo Sontag,et al. Nonsmooth control-Lyapunov functions , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.
[26] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[27] A. I. Subbotin,et al. Game-Theoretical Control Problems , 1987 .
[28] Francis H. Clarke,et al. Feedback Stabilization and Lyapunov Functions , 2000, SIAM J. Control. Optim..
[29] E. Michael. Continuous Selections. I , 1956 .
[30] Eduardo Sontag. A universal construction of Artstein's theorem on nonlinear stabilization , 1989 .