micrOMEGAs4.1: Two dark matter candidates
暂无分享,去创建一个
A. Semenov | F. Boudjema | G. Bélanger | Alexander Pukhov | A. Pukhov | F. Boudjema | A. Semenov | G. Bélanger
[1] Chao-Qiang Geng,et al. Imprint of multicomponent dark matter on AMS-02 , 2014 .
[2] Ofer Lahav,et al. The Cosmological Parameters , 2003 .
[3] He Zhang,et al. Exotic charges, multicomponent dark matter and light sterile neutrinos , 2012, 1211.0538.
[4] H. S. Miley,et al. CoGeNT: A Search for Low-Mass Dark Matter using p-type Point Contact Germanium Detectors , 2012, 1208.5737.
[5] Hiroshi Takano,et al. Multi-Component Dark Matter Systems and Their Observation Prospects , 2012, 1207.3318.
[6] Kyu Jung Bae,et al. Mixed axion/neutralino dark matter in the SUSY DFSZ axion model , 2013 .
[7] William H. Press,et al. The Art of Scientific Computing Second Edition , 1998 .
[8] Pasquale Dario Serpico,et al. Pulsars as the sources of high energy cosmic ray positrons , 2008, 0810.1527.
[9] Georg G. Raffelt,et al. Neutrino and axion hot dark matter bounds after WMAP-7 , 2010, 1004.0695.
[10] Alexander Pukhov,et al. Minimal semi-annihilating ℤN scalar dark matter , 2014, 1403.4960.
[11] P. Lipari,et al. First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5350 GeV , 2013 .
[12] William H. Press,et al. Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .
[13] Yue-Liang Wu,et al. Enhancement of dark matter relic density from late time dark matter conversions , 2011, 1101.4148.
[14] Joab R Winkler,et al. Numerical recipes in C: The art of scientific computing, second edition , 1993 .
[15] G. C. Barbarino,et al. An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV , 2009, Nature.
[16] C. A. Oxborrow,et al. Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.
[17] I. P. Ivanov,et al. Z_p scalar dark matter from multi-Higgs-doublet models , 2012 .
[18] P. S. Bhupal Dev,et al. Multiple dark matter scenarios from ubiquitous stringy throats , 2012, 1211.0250.
[19] R. B. Barreiro,et al. Planck 2013 results , 2014 .
[20] T Glanzman,et al. Measurement of separate cosmic-ray electron and positron spectra with the fermi large area telescope. , 2011, Physical review letters.
[21] M. Raidal,et al. Impact of semi-annihilations on dark matter phenomenology - an example of Z_N symmetric scalar dark matter , 2012, 1202.2962.
[22] Brian Batell,et al. Dark discrete gauge symmetries , 2010, 1007.0045.
[23] Anirban Biswas,et al. Two component dark matter: a possible explanation of 130 GeV γ-ray line from the galactic centre , 2013, 1301.3668.
[24] A. Semenov,et al. micrOMEGAs_3: A program for calculating dark matter observables , 2014, Comput. Phys. Commun..
[25] Hiroshi Okada,et al. Multicomponent dark matter particles in a two-loop neutrino model , 2013, 1303.7356.
[26] E. Hairer,et al. Solving Ordinary Differential Equations I , 1987 .
[27] Georg Raffelt,et al. Cosmological mass limits on neutrinos, axions, and other light particles , 2003 .
[28] Aleksandra Drozd,et al. Two-component dark matter , 2013, 1309.2986.
[29] Jong-Chul Park,et al. Assisted freeze-out , 2011, 1112.4491.
[30] K. Zurek,et al. Multi-Component Dark Matter , 2008, 0811.4429.
[31] D. Hauff,et al. Results from 730 kg days of the CRESST-II Dark Matter search , 2011, 1109.0702.
[32] Daijiro Suematsu,et al. Signals of dark matter in a supersymmetric two dark matter model , 2010, 1012.4007.
[33] P. Belli,et al. New results from DAMA/LIBRA , 2010, 1002.1028.
[34] G. Drake,et al. Results from a search for light-mass dark matter with a p-type point contact germanium detector. , 2010, Physical review letters.
[35] R. Webb,et al. First results from the LUX dark matter experiment at the Sanford underground research facility. , 2013, Physical review letters.
[36] Michael Klasen,et al. A minimal model for two-component dark matter , 2014, 1406.0617.
[37] G. C. Barbarino,et al. Observation of an anomalous positron abundance in the cosmic radiation , 2008, 0810.4995.
[38] S. Rakshit,et al. A possible explanation of low energy γ-ray excess from galactic centre and Fermi bubble by a Dark Matter model with two real scalars , 2013, 1312.7488.
[39] Hiroshi Takano,et al. Two-loop radiative seesaw mechanism with multicomponent dark matter explaining the possible γ excess in the Higgs boson decay and at the Fermi LAT , 2013, 1302.3936.
[40] D O Caldwell,et al. Silicon detector dark matter results from the final exposure of CDMS II. , 2013, Physical review letters.
[41] Bin Zhu,et al. Two Component Higgs-Portal Dark Matter , 2013, 1308.3851.
[42] Ernest Ma. Verifiable radiative seesaw mechanism of neutrino mass and dark matter , 2006 .
[43] A. Semenov,et al. micrOMEGAs2.0: A program to calculate the relic density of dark matter in a generic model , 2007, Comput. Phys. Commun..
[44] E Aprile,et al. Dark matter results from 225 live days of XENON100 data. , 2012, Physical review letters.
[45] A. Semenov,et al. micrOMEGAs: Version 1.3 , 2006, Comput. Phys. Commun..
[46] Christoph Weniger,et al. A Tentative Gamma-Ray Line from Dark Matter Annihilation at the Fermi Large Area Telescope , 2012, 1204.2797.
[47] Howard Baer,et al. Mainly axion cold dark matter in the minimal supergravity model , 2009, 0906.2595.
[48] Hiroshi Okada,et al. Multi-component Dark Matters in Two Loop Neutrino Model , 2013 .
[49] F. A. Seiler,et al. Numerical Recipes in C: The Art of Scientific Computing , 1989 .